

Revisiting Interscholastic Competitive Balance: An Update on Policy and Participation

James E. Johnson¹
Tyler J. Ratts²

Adam M. Navarro¹

¹*Ball State University*

²*University of Dubuque*

In 2015, Johnson et al. completed the first comprehensive national review of interscholastic competitive balance policies that established a baseline for approaches to ensure fair and equitable high school athletic competition. The review concluded that several types of policies were created to curb the disproportionate amount of success achieved by private schools. Such policies were in addition to enrollment classifications, which are a staple of competitive balance in every state. In the decade since that evaluation, policies have evolved. The purpose of this study was to replicate the 2015 study to determine the current status of policy implementation and identify trends that could help guide interscholastic stakeholders. Results indicated more schools exist overall, more than half of all states have made policy adjustments, and the more schools the greater likelihood of having a success or socioeconomic factor. Specifically, there was a 3.2% increase in public schools (16,978), a 6.8% increase in private schools (2,760), a 150% increase in states that use enrollment multipliers (20), a 25% decrease in states that use separate playoffs (3), a 167% increase in states that use success factors (8), and a 350% increase in states that use socioeconomic factors (9). The implications of these trends related to enrollment, public/private schools, athletic success, wealth, and the theory of distributive justice are discussed.

Key Words: High School, Competitive Balance, Public vs. Private, Interscholastic

In a 2015 article entitled, *National Review of Interscholastic Competitive Balance Solutions Related to the Public-Private Debate*, Johnson et al. outlined high school competitive balance policies for all U.S. states. Specifically, policies related to enrollment and tournament competition, with particular regard to public and private status, were detailed. This paper was the first to provide a comprehensive national collection of policies explaining how interscholastic state associations manage equitable practices for high school teams competing in postseason tournaments. It has been a decade since the Johnson et al. (2015) study, and the landscape of interscholastic sport continues to evolve. As stakeholders consider best practices to mold policy within high school athletics, it is imperative that the information is contemporary to ensure its pragmatic benefits.

The genesis of examining interscholastic competitive balance emerged from the popularity of high school sports. There are currently more than eight million student participants (NFHS, 2024), with millions more parents, coaches, administrators, and other stakeholders investing time and resources into athletic programs (Miracle & Rees, 2010). The number of people whose lives are impacted by interscholastic athletics influenced Robinson et al. (2001) to describe it as the “single most significant dimension” in sport (p. 21). Fraina et al. (2022) echoed this notion calling interscholastic athletic participants the most significant body in sport.

Effective high school athletic programs aim to provide student-athletes with positive outcomes that lead to life

skill development and cultivate meaningful members of society through participation (Blanton et al., 2024). Interscholastic sport also overlaps into the youth/travel/club sport dimension, where it is estimated that more than 33 million participants ages 6-17 compete annually (Aspen Institute, 2024). Many adolescent participants on the older end of the travel-sport continuum are high school athletes competing in their *off-season* to hone their skill for a potential state championship run or to pursue a rare college athletic scholarship.

When competition is perceived as fair, stakeholders within high school athletics can enjoy positive experiences as both participants and fans. An issue, unfortunately, that has caused some state athletic associations decades of frustration is known as the ‘public/private debate’ (Johnson et al., 2015; Monahan, 2012). Critics of private schools, often referred to as non-boundary schools, suggest there are inherent advantages (e.g., geographical freedom in enrollment, ability to recruit, financial flexibility) allowing them to have disproportionately high levels of success compared to their public school counterparts. In response, policies have been created by state associations to counteract these advantages in pursuit of competitive balance. It is this public/private issue that influenced the original study one decade ago (Johnson et al., 2015), and subsequently, a large part of this reevaluation.

An additional justification for replicating Johnson et al.’s original work is the evolution of interscholastic sport over the past decade. With participation rates climbing by more than 250,000 from 2014

to 2024 (NFHS, 2024), the popularity of high school sports has grown in the form of television exposure, social media, and emerging Name, Image, Likeness (NIL) policies (Perloff, 2025). More than ever, high school sports are considered a path to prestige and college scholarships where private lessons, individualized recruitment profiles, and social media followers are expected for an athlete to ‘stand out.’ These inclinations encourage a sport culture where success or failure is posted immediately, and competition is fierce, making competitive balance a critical concept (Flanagan, 2022). Furthermore, a national sample of 680 interscholastic athletic directors indicated that since 2006-07, issues with retaining coaches, pay-to-play structures, lack of officials, and high schools recruiting athletes have increased (Forsyth et al., 2024a). Concerns about parent pressure, club sport influence, and sport specialization have also increased (Forsyth et al., 2024b).

These trends suggest interscholastic sport is moving away from amateur ideals and more toward environments that could compromise fair and just competition. Administrators must do what they can to ensure all participants have expe-

riences that promote competitive balance amid these pressures. Therefore, the overarching research questions guiding this examination were:

RQ1: What is the current state of interscholastic competitive balance policies?

RQ2: How have interscholastic competitive balance policies evolved in the past decade?

Purpose

The findings by Johnson et al. in 2015 are reprinted below in Table 1. This collection of policies from all 50 states provided benchmarking that had never before been assembled. That approach established a baseline from which to observe ongoing competitive balance trends. Documenting these trends is critical for policymakers in light of the evolving landscape of interscholastic sport (Forsyth et al., 2024a; 2024b) and as states consider what strategies best meet their mission of fair and competitive play. Thus, the purpose of this work is a renewed evaluation one decade after the baseline in hopes of identifying trends of interscholastic competitive balance.

Table 1
2015 NFHS State Association Data (Reprinted from Johnson et al., 2015)

State	Members	Public	Private	Class	Sep. Playoffs	Multiplier	Legislation
Alabama	414	363	51	All Multiple	No	Yes (1.35)	No
Alaska	200	188	12	Single and Multiple	No	No	No
Arizona	269	241	28	Single and Multiple	No	No	Yes ¹
Arkansas	294	278	16	All Multiple	No	No	Yes ²
California	1,540	1,128	412	Single and Multiple	No	Yes (2.00) ⁴	Yes ³
Colorado	343	310	33	Single and Multiple	No	No	No
Connecticut	189	5	5	All Multiple	No	No	Yes ⁶
Delaware	58	32	26	Single and Multiple	No	No	No
D.O.C.	44	34	10	Single and Multiple	No	No	No

Florida	682	471	211	Single and Multiple	No	Yes (2.00) ⁴	No
Georgia	450	400	50	All Multiple	Yes	No	Yes ⁷
Hawaii	96	60	36	Single and Multiple	No	No	No
Idaho	157	146	11	All Multiple	No	No	No
Illinois	815	640	175	Single and Multiple	No	Yes (1.65) ⁸	No
Indiana	412	364	48	Single and Multiple	No	No	Yes ⁹
Iowa (IAHSAA) ¹⁰	373	333	40	Single and Multiple	No	No	No
Kansas	354	327	27	All Multiple	No	No	No
Kentucky	277	230	47	Single and Multiple	No	No	No
Louisiana	389	299	90	All Multiple	Yes ¹¹	No	No
Maine	152	120	32	Single and Multiple	No	No	Yes ¹²
Maryland	198	198	0	Single and Multiple	No ²⁰	No	No
Massachusetts	372	319	53	Single and Multiple	No	No	Yes ¹³
Michigan	760	649	111	Single and Multiple	No	No	Yes ¹²
Minnesota	520	5	5	Single and Multiple	No	No	No
Mississippi	259	246	13	All Multiple	No	No	No
Missouri	591	521	70	Single and Multiple	No	Yes (1.35)	No
Montana	179	170	9	All Multiple	No	No	No
Nebraska	309	276	33	Single and Multiple	No	No	No
Nevada	106	90	16	All Multiple	No	No	No
New Hampshire	91	81	10	Single and Multiple	No	No	Yes ¹²
New Jersey	437	361	76	Single and Multiple	Yes	Yes (2.00) ⁴	Yes ¹²
New Mexico	160	137	23	Single and Multiple	No	Yes (1.30)	No
New York	783	723	60	Single and Multiple	No	No	Yes ¹⁴
North Carolina	399	395	4	All Multiple	No	No	No
North Dakota	171	161	10	Single and Multiple	No	No	No
Ohio	825	702	123	Single and Multiple	No	No	No
Oklahoma	481	455	26	All Multiple	No	No	Yes ¹⁵
Oregon	289	213	76	All Multiple	No	No	Yes ¹⁶
Pennsylvania	760	621	139	Single and Multiple	No	No	No
Rhode Island	55	42	13	Single and Multiple	No	No	Yes ¹⁷
South Carolina	207	203	4	Single and Multiple	No ²⁰	No	No
South Dakota	181	168	13	Single and Multiple	No	No	No
Tennessee	399	330	69	All Multiple	Yes	Yes (1.80)	Yes ¹⁸
Texas	1,400	1,398	2	All Multiple	No ²⁰	No	Yes ¹⁹
Utah	136	112	24	All Multiple	No	No	No
Vermont	80	65	15	Single and Multiple	No	No	No
Virginia	313	313	0	All Multiple	No ²⁰	No	No
Washington	399	344	55	Single and Multiple	No	No	No
West Virginia	126	117	9	Single and Multiple	No	No	No
Wisconsin	505	429	76	Single and Multiple	No	No	No
Wyoming	71	70	1	Single and Multiple	No	No	No

Additional Subscript Information Relating to Table 1 (Reprinted from Johnson et al., 2015).

Note: Numerous state associations distinguish public charter, magnet, university, American Indian reservation and town academy etc. schools differently regarding public or private status. The numbers reported in Table 1 are shown based on how each NFHS member state association classifies a school with selective enrollment.

Subscript Information:

- 1 Arizona passed a motion in March 2013 that changed its Division and Section placement by implementing computer scheduling software that would move non-private schools down to make divisions equal.
- 2 In Arkansas, a private school that enrolls more than 80 students is automatically moved up by one classification in all sports.
- 3 Following regular season competition in California, sections within the state association determine where each team moves on to play in state tournaments.

4 California, Florida, and New Jersey double the total enrollment of single-sex schools.

5 Connecticut and Minnesota chose to not indicate the number of public and private school members.

6 Connecticut has a state tournament success factor that impacts classifications of schools that draw from outside their district — charter, magnet, parochial, vocational technical, vocational agricultural and inter-district magnet schools -- or those which have project choice programs, for boys and girls soccer and boys and girls basketball.

7 Georgia has separate playoffs for public and private playoffs for all sports within their smallest classification, Class A.

8 In Illinois, a 1.65 enrollment multiplier is implemented, but there are waivers that can be granted to schools that meet specific criteria.

9 Indiana enacted a tournament success factor for all of its sanctioned team sports in 2012.

10 The Iowa High School Athletic Association (IAHSAA) only governs boy's athletics; the Iowa Girls High School Athletic Union (IGHSAU) governs girl's athletics.

11 In 2013, Louisiana passed legislation that split the state's high school football playoffs into select and non-select brackets. The non-select (public) schools compete amongst five classes for five state championships while the select (faith-based, private, charter, magnet, laboratory and dual-curriculum) schools compete for two state championships in two classes.

12 In several states (e.g. Maine, Michigan, New Hampshire, New Jersey) schools can opt to compete in a larger class but must go through an application and review process.

13 Massachusetts has individual sport committees made up of athletic directors, principals, and other administrators that can consider level of play and whether or not to move a team up or down a classification.

14 New York has 11 sections that each have a "Classification of Non-Public Schools Committee" that can determine a non-public school's classification based on overall success.

15 Rule 14 Section 1 of Oklahoma's "Rules Governing Interscholastic Activities in Senior High Schools" details the reclassification process for member schools. If a member school meets three or more of the following four stipulations, it will be moved to a higher classification.

- i.) has the ability to decline admission or enrollment to a student, even if the student and the student's parents (or custodial parent or court-appointed guardian with legal custody of the student) reside within that school's public school district or designated geographic area;
- ii.) the school is located within a fifteen (15) mile radius of a school placed in the 5A or 6A classification according to ADM (i.e. enrollment);
- iii) fewer than twenty-five (25) percent of the children enrolled at the school in grades nine through twelve qualify for free or reduced lunches;
- iv) the school's ADM in grades nine through 12 has increased by fifty (50) percent or more over the previous three school years.

Also, if a school finishes among the top eight within their class three or more times over a five-year period in a specific sport, that specific sport team will remain in that class regardless of enrollment.

16 Oregon implements an enrollment subtractor. The number of students who receive free and reduced lunch is multiplied by .25 and then that number is subtracted from the total enrollment of students.

17 Rhode Island began new realignment guidelines in 2014-2015 with a formula that considers win/loss percentage and enrollment when classifying schools in the sports of baseball, boys and girls basketball, fast pitch softball, field hockey, football, boys and girls lacrosse, boys and girls soccer, boys and girls tennis, boys and girls volleyball, and wrestling.

18 Tennessee classifies schools into Division I and Division II. Division II exists for schools that give need-based financial aid to varsity athletes. Many private schools have opted to play in Division II, however, private schools can compete in Division I but must be subjected to a 1.80 enrollment multiplier for classification.

19 In Texas, private school members are automatically placed into the largest classification in the state, 6A.

20 Maryland, South Carolina, Texas, and Virginia noted that single or multiple athletic associations with high or solely private membership exist within their state. Only the member state associations identified by the National Federation of State High Schools were contacted for this study.

Literature Review

Despite substantial investment by students and adults in high school athletics (Miracle & Rees, 2010), the national popularity of highly commercialized sport dimensions (e.g., college sport, professional sport) has generated much more academic attention. If the millions of stakeholders within interscholastic sport are to benefit from empirical research, data must be relevant to desired outcomes. Thus, un-

derstanding the theoretical and practical frameworks surrounding these issues, as well as revisiting the baseline data established one decade earlier (Johnson et al., 2015), will accentuate the need for updated information and trend identification within the interscholastic sport space.

Theory of Distributive Justice

When concepts of fairness and justice are applied to sport outcomes, it is

assumed competition is balanced. This sentiment is shared by state athletic associations and the National Interscholastic Athletic Administrators Association (NIAAA), who emphasize sportspersonship, integrity, honesty, and dignity (Blackburn et al., 2025). These ideals are echoed in many state athletic association missions, but the context of each state creates unique challenges for determining what is fair. “It seems every state and everybody wants what is perceived as a *level playing field*, but no one seems to have an agreed-upon definition of a level playing field” (Brocato, 2013, para. 20).

The theory of distributive justice (Beauchamp, 1991; Frankena, 1973) has been effectively used to frame interscholastic competitive balance relative to the public/private debate (Johnson et al., 2014; Johnson, Forsyth et al., 2019; Scott et al., 2019). At its core, distributive justice refers to benefits or burdens distributed in a way that is fair and consistent for participants. A comparative component is essential to determine that one party is not receiving undue advantages or punishments that would disrupt justice. This concept often reflects policies where routine evaluation of disbursements occur. For example, comparisons of enrollment, sport rules, recruiting, and transferring are reviewed by state athletic associations to ensure all schools are participating at an appropriate level with adequate resources.

The second component of distributive justice is scarcity for a benefit. If scarcity of an outcome is established, and comparisons are made to ensure participants

are not receiving undue benefits or burdens to access that outcome, distributive justice is assumed. This theory applies to interscholastic sport because the scarcity of a state championship is assured by only one winner, and comparative policies are in place to ensure schools have a relatively equal opportunity to earn that championship.

As one might expect, there are different perspectives about what is a benefit or burden, what is scarce, and what is fair or plentiful. Within the theory of distributive justice, there are three competing perspectives that help to frame these definitions. A *libertarian* perspective would suggest limited rules and freedom to make choices are paramount for all participants. For interscholastic sport, this perspective would suggest all schools operate as they see fit, and the spoils go to the most successful. An *egalitarian* perspective would agree with the libertarian perspective only if the qualities of the group are relatively equal. So, if a specific type of school (e.g., private schools) was found to have inherent advantages, an egalitarian perspective would suggest rules in place that neutralize such advantages. The *utilitarian* perspective advocates the greatest good for the greatest amount of people relative to a cost/benefit analysis. If, for example, most students attend public high schools, it could be argued policies should benefit those schools.

The different distributive justice perspectives are particularly relevant to the public/private debate because private schools have been found in some states

to have a much higher percentage of state championships than their percentage of representation (Johnson et al., 2014; Scott et al., 2019). Whereas a libertarian perspective would defend consistently successful private schools for attracting and developing student-athletes, an egalitarian perspective would argue the most elite and successful private schools often have inherent advantages such as admission autonomy, facilities, academic performance, and financial resources (Epstein, 2008; Johnson et al., 2014; 2019). It is this perspective, combined with unusually high tournament success, that has fueled some public high school stakeholders to be critical of private school success (Stoffer et al., 2021). In turn, these perspectives sometimes influence interscholastic competitive balance policies aimed at promoting fairness and equity within competition.

Competitive Balance

Competitive balance strategies have been widely utilized through a variety of perspectives within the sport industry. In their discussion of this ideal, Zimbalist (2002) noted, “There are as many ways to measure competitive balance as there are to quantify the money supply” (p. 112). One common lens through which these efforts have been examined is via an economic perspective, as financial-focused policies (e.g., free agency, roster limits, revenue sharing, salary caps) aim to create a level playing field. Across the rules that have been developed by sport leagues, Fort and Quirk (1995) found that only revenue sharing and salary caps had an impact on

competitive balance. With organizations looking to expand while still maintaining competitive balance, examining team-specific and league-specific variations in winning percentage has helped to analyze sport economics (e.g., free agency, league expansion) and compare changes across eras (Humphreys, 2002). As policies have evolved, new methods have helped established this balance, such as leveraging collective bargaining agreements (Bognar et al., 2024), giving organizations more flexibility to fill roster needs (Ge et al., 2025), and reimagining the design of postseason play (Lenten, 2015).

Over time, these policies have received further scrutiny. Núñez-Pomar et al. (2018) analyzed five sport management journals and noted the prominence of competitive balance as a key consideration within the existing literature, especially as it related to assessing policies, its relationship with positive outcomes, and the need to receive support from stakeholders. Shortly after, Doria and Nalebuff (2021) highlighted the uniqueness of sport in justifying the need for competitive balance. While other industries feature organizations striving to eliminate competition, the sport industry takes steps to minimize inequality among teams. This is in part because achieving competitive balance has a demonstrated positive effect on fan attendance (Levin, 2009; Levin & Bailey, 2012). Two types of measures have been utilized to determine the success of competitive balance. The first is a static measure, which looks at equity within a single season, while dynamic metrics consider the changes in team performance across multiple sea-

sons (Doria & Nalebuff, 2021). Through the intentionality that has been dedicated to this pursuit within North America, several sports have experienced a noted increase in achieving competitive balance, including baseball (Ge et al., 2025), football (Lenten, 2015), and hockey (Bowman et al., 2018).

To ensure meaningful competitive balance strategies are in place, there must also be a consideration of their potential impact on stakeholders, as certain policies could adversely affect athletes due to the performance of previous teams. For example, if an athletic program is moved into a higher classification based on past tournament success, it is the future athletes who must take on this heightened competition regardless of their abilities (Johnson et al., 2015). Further, how fans respond to rules and restrictions should help inform whether continued reliance on them is in the best interest of the governing body (Fort & Quirk, 1995; Zimbalist, 2002). Késenne (2015) reaffirmed this perspective, noting that from a welfare point of view, the interests of all stakeholders should be represented within competitive balance decisions. At the high school level specifically, parents have expressed concern for the perceived disproportionate success of private schools. They believed that competitive balance policies should minimize the advantages they felt were afforded to them (Stoffer et al., 2021).

Within the present landscape of the high school sport segment, economic policies found in professional sport, such as instituting a salary cap or free agency,

are not feasible. However, the desire to facilitate fairness still exists, thus leading to alternative means of establishing balance within competition. For many state associations, multiple strategies have been combined to analyze the characteristics of their member schools and pinpoint concerns through policy implementation (Johnson et al., 2015). With varying available approaches, Zimbalist (2003) posited, “In the end, it may be that the best measure of competitive balance is a multivariate index, that it is nonlinear or constrained, and/or that it differs league by league” (p. 163). Ultimately, for each high school state association to ensure fairness within its competition, they must identify the policy that best meets their realities.

Interscholastic Competitive Balance

State athletic associations are governing bodies that determine the appropriate policies to ensure fair competition and have the power to structure their post-season tournaments as they see fit. The structure of tournaments is largely dependent on how individual schools or teams are classified relative to other schools in the state, ensuring the comparative component of distributive justice theory. It is comparative policies that often consider the alleged advantages of private high schools (e.g., Epstein, 2008; Johnson, Forsyth et al., 2019; Porter, 2019; Scott et al., 2019), with five types of competitive balance policies typically found within interscholastic sport.

Enrollment Classifications. The most common competitive balance policy in interscholastic sport is the division

of schools into enrollment classifications, which generally ensure that programs with a similar range of possible athletes based on school enrollment are competing against each other. Some states refer to these groups of schools as divisions, while others refer to them as classes. Regardless of the terms, the goal is for enrollment parameters to “eliminate large schools with deep athletic talent pools dominating much smaller schools with shallow talent pools” (Johnson et al., 2015, p. 37).

Findings from a decade earlier demonstrated every state utilizing enrollment in some form, with 17 states having enrollment classifications for all sports (Johnson et al., 2015). Some states held on to historical precedents and kept single classes for a few select sports. Typically, enrollment classifications do not consider whether a school is public or private, but there have been some states attempt to intertwine enrollment with other public/private concepts (Popke, 2012; Porter, 2019). These attempts have generally been unsuccessful, in part because other policies that specifically target private school dominance have been more successful.

Multipliers. Almost exclusively aimed at private schools, multipliers applied to enrollment create an elevated number from which classification decisions are made. Epstein (2008) noted that “the underlying motivation for the multiplier is to give an artificial advantage to boundary schools to compensate for real or perceived illicit recruiting that is not adequately or effectively policed” (p. 3). Multipliers have had mixed results with some states seeing reduced state championships for private schools, while others reported

no impact (Epstein, 2008). Lawsuits have also emerged to challenge multipliers for unduly targeting private schools (Epstein, 2008).

The results from the Johnson et al. 2015 analysis found that eight states had some form of multiplier, ranging from 1.3 to 2.0. Of the eight, three states applied the multiplier to single-sex schools (i.e., California, Florida, and New Jersey). As Johnson et al. noted, the challenge with multipliers is rooted in the egalitarian perspective of distributed justice, as specific schools are targeted for their characteristics. This allows private schools to claim unjust practice and seek legal recourse (James, 2013). Moreover, struggling private schools with little athletic success or resources could be doubly impacted having to face greater competition in higher classes.

Separate Playoffs. The most direct method for nullifying assumed private school advantages is to create a separate classification based on public or private status instead of enrollment. This option is often proposed but routinely defeated by state associations in fear of a new governing body emerging as direct competition (Monahan, 2012). If this sort of competition were to happen, different policies on recruiting, training, transfer status, and eligibility could be created, upending the competitive balance that already exists (Popke, 2012). These fears, as well as potential litigation and competition for resources, caused Wisconsin (Christi, 2000) and Maryland (Epstein, 2008) to eliminate separate playoffs in 2000 and 2005, respectively.

In 2015, Johnson et al. found that Georgia, Louisiana, New Jersey, and Tennessee were the states with a separate playoff structure for at least one sport. Additionally, Maryland, South Carolina, Texas, and Virginia had separate governing bodies for private schools leading to a different tournament altogether. Thus, eight schools had separation in postseason tournaments based on public/private status.

Success Factors. The legal risks of using multipliers and separate playoffs, as well as potential competition for resources that come with competing governing bodies, gave way to a new competitive balance solution known as ‘success factors.’ Instituted more than a decade ago, this strategy generally eliminates an evaluation of public and private status while instead focusing on the level of success (Porter, 2019). A formula is used to determine if a team has had greater success, typically in postseason play, than their enrollment would predict without determining what those reasons could be. In concept, a team that has a disproportionately high or low amount of success can be moved up or down in enrollment classification to face appropriate competition (Johnson et al., 2014; 2023). Typically, success factors apply only to team sports (e.g., basketball, volleyball) and do not apply to individual sports (e.g., gymnastics, tennis).

Success factors had only recently been in existence during the initial assessment of competitive balance factors (Johnson et al., 2015). Indiana had the first policy that used a two-year scoring structure to grant points based on how far a team

advanced in the state tournament, which would then affect that individual team’s classification for the following two-year time period. Rhode Island used a combination of overall winning percentage and enrollment with a weighted division calculation to reclassify (RILL, n.d.), while Connecticut used a success factor for private schools with voluntary participation, and sport-by-sport metrics for success thresholds. It was predicted by Johnson et al. these types of policies would likely be adopted more widely as state associations attempted to avoid unduly targeting of private schools.

Socioeconomic Factors. Somewhat similar to success factors, socioeconomic factors consider financial resources rather than success in reclassifying programs. The rationale of implementing a policy based on socioeconomic metrics is logical considering financial resources are one of the most impactful variables for competitive balance (Epstein, 2008; Hall, 2023). Metrics such as the number of free or reduced lunches or total dollars per student can be used to determine schools most likely to have discretionary funds available to support athletics. Those schools would then be perceived as having greater opportunities and resources that would lead to athletic success given this financial advantage (Yost, 2012). Hall (2023) highlighted the growing issue of poverty and its impact on interscholastic athletes, explaining that 17% of public schools have at least 75% of students qualify for free or reduced lunch, which is up from only 3% in 2000. As Johnson et al. (2015) wrote, “If wealth can be shown as a factor more

important than public or private designation, using wealth as a primary factor could be an effective solution" (p. 43).

In 2015, Johnson et al. reported that Oklahoma and Oregon were the only two states that implemented socioeconomic factors. In Oklahoma, if fewer than 25 percent of enrolled students qualify for free or reduced lunch, they would move up a classification. This rule implies that more affluent families would justify a higher sport classification, presumably due to more readily available resources and the advantage that accompany such resources, which could contribute to greater athletic success. Oregon's approach also used free and reduced lunch, but it multiplied students who receive free or reduced lunch by .25 and subtracted that number from total enrollment to arrive at a refined enrollment number for classification purposes.

Method

Between March 15 and April 19, 2025, a partial replication (Morrison, 2021) of Johnson et al. (2015) was conducted. The NFHS directory of National Federations of State High Schools was utilized to confirm the 51 full member associations, which included all state associations and the District of Columbia. The affiliated associations within NFHS were not included in the analysis. Given the vast improvement of online resources made readily available by state associations since the 2015 study, the first layer of data collection occurred through each association's official website. If information could not be ascertained through the website, a

second layer of data collection occurred through direct emails or phone calls to the state association personnel. When direct contacts were made, high-ranking leaders at state associations (e.g., directors of membership) provided the data. All data were accumulated through official websites or direct contacts. Data collection was completed by a secondary researcher and confirmed by the primary researcher. This validation resulted in 100% inter-rater reliability. There were no states with missing data.

Data types were consistent with data in Johnson et al., (2015) so that comparisons could be made. No additional types of policies were added. The total number of high schools, public schools, private schools, the nature of classifications (i.e., single or multiple), separate playoffs, multipliers, and legislation (i.e., success and/or socioeconomic factors) were collected. Data analysis first consisted of isolating the 2025 data to describe the current state of interscholastic competitive balance policies. Second, data from 2025 were compared to data found by Johnson et al. in 2015. The comparisons included frequencies to identify trends.

Finally, as an additional layer of analysis to identify potential trends in the 2025 data, two geographical variables were collected. The total land in square miles was collected for each state (<https://www.census.gov/geographies/reference-files/2010/geo/state-area.html>) to evaluate if state size impacted policy. The National Interscholastic Athletic Administrators Association (NIAAA) geographic sections were also collected, which are

divided into eight regions of the U.S. that could help discern if specific parts of the country are partial to specific types of policies (NIAAA, 2025). To assess relationships among square miles and the other variables, correlations were conducted. Pearson correlations were used for normally distributed continuous variables (member total, public total, private total, % of private, and sq. miles), and Point-biserial was used when dichotomous variables were included (separate playoffs, multiplier, legislation). To assess relationships among regions of the country and policy types, chi-square Fisher-Halton Exact Tests were conducted.

Results

The results from the 2025 data can be seen in Table 2, as well as the additional subscript information directly following the table. For ease of table comparison

between the two timeframes, data are presented in the same structure as the data from 2015 (Table 1). Noteworthy findings from 2025 include a total of 19,738 member schools (16,978 public, 2,760 private) across all 51 state associations. All states used multiple enrollment classifications, with 34 states having a single class for at least one sport. There were 20 states that utilized some form of multiplier, most of which applied to private same-sex schools. Three states have implemented separate playoffs organized by their state association, but six states have additional private schools that are not included in the state athletic association totals because a separate governing body exists for those schools. There are 17 states with some form of success or socioeconomic formula applied with varying levels or triggers based on state association policy.

Table 2

NFHS State Association Data - 2025

State	Members	Public	Private	Class	Separate Playoffs	Multiplier	Legislation	Square Miles	NIAAA Section
Alabama	424	370	54	All Multiple	No	Yes (1.35)	Yes ¹	50,645	3
Alaska	218	209	9	Single and Multiple	No	No	Yes ²	570,641	8
Arizona	282	255	27	Single and Multiple	No	Yes (2.00) ³	No	113,594	7
Arkansas	298	278	20	All Multiple	No	Yes (2.00) ³	Yes ⁴	52,035	6
California	1,633	1,243	390	Single and Multiple	No	No	Yes ⁵	155,779	7

Colorado	368	239	129	Single and Multiple	No	Yes (2.00) ³	No	103,642	6
Connecticut	190	173	17	All Multiple	No	No	Yes ⁶	4,842	1
Delaware	61	42	19	Single and Multiple	No	Yes (2.00) ³	No	61	2
D.O.C.	56	39	17	Single and Multiple	No	No	No	1,949	2
Florida	756	547	209	Single and Multiple	No	Yes (2.00) ³	No	53,625	3
Georgia	455	412	43	Single and Multiple	Yes	Yes (3.00)	Yes ⁷	57,513	3
Hawaii	130	96	34	Single and Multiple	No	No	No	6,423	7
Idaho	170	154	16	Single and Multiple	No	No	No	82,643	8
Illinois	804	590	214	Single and Multiple	No	Yes (2.00) ³	Yes ⁸	55,519	4
Indiana	409	334	75	Single and Multiple	No	No	Yes ⁹	35,826	4
Iowa (IAHSAA) ¹⁰	367	314	53	Single and Multiple	No	No	Yes ¹¹	55,857	4
Kansas	349	321	28	Single and Multiple	No	No	No ¹²	81,759	5
Kentucky	290	235	55	Single and Multiple	No	No	No	39,486	2
Louisiana	426	332	94	All Multiple	No ¹³	Yes (2.00) ³	No	43,204	3
Maine	151	124	27	Single and Multiple	No	Yes (2.00) ³	No	30,843	1
Maryland	200	200	0	All Multiple	No ¹⁴	No	No	9,707	2
Massachusetts	382	341	41	Single and Multiple	No	No	Yes ¹⁵	7,800	1
Michigan	752	648	104	Single and Multiple	No	No	No	56,539	4

Minnesota	501	417	84	Single and Multiple	No	Yes (2.00) ³	Yes ¹⁶	79,627	5
Mississippi	213	206	7	All Multiple	No	Yes (2.00) ³	No	46,923	3
Missouri	593	523	70	Single and Multiple	No	Yes (2.00) ³	Yes ¹⁷	68,742	5
Montana	182	172	10	All Multiple	No	No	No	145,546	8
Nebraska	309	269	40	All Multiple	No	Yes (2.00) ³	No	76,824	5
Nevada	125	107	18	All Multiple	No	No	No	109,781	7
New Hampshire	89	80	9	Single and Multiple	No	No	No	8,953	1
New Jersey	440	368	72	Single and Multiple	Yes	Yes (2.00) ³	No	7,354	1
New Mexico	158	143	15	Single and Multiple	No	Yes (1.30)	No	121,298	6
New York	786	710	76	Single and Multiple	No	No	Yes ¹⁸	47,126	1
North Carolina	442	439	3	All Multiple	No	No	No	48,618	3
North Dakota	171	156	15	Single and Multiple	No	No	No	69,001	5
Ohio	818	696	122	Single and Multiple	No	Yes ¹⁸	Yes ¹⁹	40,861	2
Oklahoma	482	458	24	All Multiple	No	No	Yes ²⁰	68,595	6
Oregon	299	245	54	All Multiple	No	Yes (2.00) ³	Yes ²¹	95,988	8
Pennsylvania	780	629	151	Single and Multiple	No	No	Yes ²²	44,743	2
Rhode Island	54	44	10	All Multiple	No	No	Yes ²³	1,034	1
South Carolina	225	220	5	All Multiple	No ¹⁴	Yes (3.00) ²⁴	No	30,061	3

South Dakota	176	160	16	All Multiple	No	No	Yes ²⁵	75,811	5
Tennessee	450	364	86	Single and Multiple	Yes	No	Yes ²⁶	41,235	3
Texas	1,552	1,550	2	Single and Multiple	No ¹⁴	No	Yes ²⁷	261,232	6
Utah	160	143	17	All Multiple	No	No	Yes ²⁸	82,170	7
Vermont	63	50	13	Single and Multiple	No	No	No	9,217	1
Virginia	316	315	1	All Multiple	No ¹⁴	Yes (2.00) ³	No	39,490	2
Washington	411	337	74	Single and Multiple	No	Yes (2.00) ³	Yes ²⁹	66,456	8
West Virginia	107	99	8	Single and Multiple	No	No	Yes ³⁰	24,038	2
Wisconsin	594	513	81	Single and Multiple	No	No	Yes ³¹	54,158	4
Wyoming	71	69	2	Single and Multiple	No	No	No	97,093	8

Additional Subscript Information Relating to Table 2.

Note: Numerous state associations distinguish public charter, magnet, university, American Indian reservation and town academy etc. schools differently regarding public or private status. The numbers reported in Table 1 are shown based on how each NFHS member state association classifies a school with selective enrollment.

Subscript Information:

- 1 Alabama implemented a Competitive Balance Factor for private schools in 2023.
- 2 In 2019, Alaska implemented a “Check System” for the sport of basketball to determine classification. All statewide boarding schools and schools within 25 miles of the municipalities of Anchorage, Fairbanks, Soldotna and Wasilla are moved up one classification from where they participated in the previous cycle.
- 3 Arizona, Arkansas, Colorado, Delaware, Florida, Illinois, Louisiana, Maine, Minnesota, Mississippi, Missouri, Nebraska, New Jersey, Oregon, Virginia, and Washington double the total enrollment of single-sex schools. Missouri only applies this to single-sex sports, such as football.
- 4 In Arkansas, a private school that enrolls more than 80 students is automatically moved up by one classification in all sports.
- 5 Following regular season competition in California, sections within the state association determine where each team moves on to play in state tournaments.
- 6 The CIAC Board of Control gives the committee of any team sport the option to use the “success in tournament” factor for tournament placement. This factor will be applied to all schools (charter, magnet, parochial, vocational technical, and those that have project choice programs) that draw more than 25 gender-specific students from outside their district.
- 7 Georgia has separate playoffs for public and private schools for all sports within their three smallest classifications, Class A, Class AA, and Class AAA.

8 In Illinois, a 1.65 enrollment multiplier is implemented for non-boundary schools (schools not limited to students within a specified area, or boundary), but there are waivers that can be granted to schools that meet specific criteria. A non-boundary, single-sex school will have both multipliers applied to their enrollment count. The IHSA noted that not every non-boundary school is private, but the vast majority are.

9 Indiana enacted a tournament success factor for all of its sanctioned team sports in 2012.

10 The Iowa High School Athletic Association (IAHSAA) only governs boys' athletics; the Iowa Girls High School Athletic Union (IGHSAU) governs girls' athletics.

11 Iowa uses an enrollment subtractor for football only. The school's number of students on free and reduced lunch is multiplied by .40 and that number is subtracted from the school's total enrollment.

12 The KSHSAA has proposed an enrollment multiplier for private schools that consider geographic, socio-economic, and championship factors.

13 In 2017, the LHSAA implemented the select and non-select playoff format in basketball, baseball, and softball. In 2022, the LHSAA changed the definition of "select" schools to include charter schools, magnet schools, and schools with open enrollment parishes.

14 Maryland, North Carolina, Mississippi, South Carolina, Texas, and Virginia noted that single or multiple athletic associations with high or solely private membership exist within their state. Only the member state associations identified by the National Federation of State High Schools were contacted for this study.

15 Massachusetts has individual sport committees made up of athletic directors, principals, and other administrators that can consider level of play and whether or not to move a team up or down a classification.

16 Minnesota subtracts 40 percent of the free/reduced lunch count reported to the Minnesota Department of Education for each school. Additionally, a school can "opt-up" to a higher classification in any activity sponsored by the school. Schools can only appeal to play in a lower classification if certain conditions are met.

17 In 2020, Missouri implemented a "Championship Factor" for all private member schools.

18 New York has 11 sections that each have a committee that is dedicated to determining the classification of non-public schools within their section.

19 Ohio implemented a competitive balance factor in 2019 for all member schools in football, soccer, volleyball, basketball, baseball, and softball. Broken down into "Tiers", multipliers of 0,1,3 (football only), and 7 (rest of applicable sports) are used on the total number of students per team that meet certain criteria.

20 Rule 14 Section 1 of Oklahoma's "Rules Governing Interscholastic Activities in Senior High Schools" details the reclassification process for member schools. If a member school meets three or more of the following four stipulations, it will be moved to a higher classification.

- i.) has the ability to decline admission or enrollment to a student, even if the student and the student's parents (or custodial parent or court-appointed guardian with legal custody of the student) reside within that school's public school district or designated geographic area;
- ii.) the school is located within a fifteen (15) mile radius of a school placed in the 5A or 6A classification according to ADM (i.e. enrollment);
- iii.) fewer than twenty-five (25) percent of the children enrolled at the school in grades nine through twelve qualify for free or reduced lunches;
- iv.) the school's ADM in grades nine through 12 has increased by fifty (50) percent or more over the previous three school years.

Also, if a school finishes among the top eight within their class three or more times over a five-year period in a specific sport, that specific sport team will remain in that class regardless of enrollment.

21 Oregon implements an enrollment subtractor. The number of students who receive free and reduced lunch is multiplied by .25 and then that number is subtracted from the total enrollment of students. If the school's free lunch percentage exceeds the state average, the number of students is multiplied by .40.

22 The PIAA uses a Competition Classification Formula that uses enrollment, tournament success, and the number of athletic transfers on a team to determine classification.

23 The RIIL has a committee composed of principals that classify schools on whatever basis they see fit.

24 South Carolina implemented a multiplier for out-of-zone students in 2023.

25 South Dakota uses an enrollment subtractor. The percentage of students who receive free and reduced lunch is multiplied by .30 and then that percentage is subtracted from the school's total student enrollment.

26 In 2018, the TSSAA unanimously approved a complete separation of public and private school playoffs. Public, charter, and magnet schools compete in Division I, while private schools compete in Division II.

27 In Texas, private school members are automatically placed into the largest classification in the state, 6A.

28 Utah only allows schools with at least 50 percent of their student body on free and reduced lunch to appeal to play in a lower classification. Any school can appeal to play up in classification.

29 Washington uses Direct Certification (process used to determine a student's eligibility for free or reduced lunch) to adjust enrollment for classification purposes. A school with a direct cert rate greater than the statewide average will have an enrollment reduction that matches the percent greater than the statewide average up to 40 percent.

30 The WVSSAC uses a classification model that considers enrollment, location, and economics to give each school a total score, and that score determines their classification.

31 Wisconsin implemented a competitive balance plan in 2024 for every sport except track & field and swim & dive. Schools have the right to appeal their assigned classification, and the WIAA will make a final determination based on the following factors.

- i.) prior year out-of-building student percentage on rosters or historical movement of student-athletes;
- ii.) socioeconomic of the school's population;
- iii.) demographics of the school's population;
- iv.) competitive history and balance;
- v.) geography;
- vi.) school's enrollment trends;
- vii.) student participation rate in WIAA-sponsored activities;
- viii.) admission policies of the school concerning enrollment.

After 2025 data were established, a comparison of 2015 and 2025 data was conducted to determine trends (see Table 3). The total number of member schools at NFHS state associations across the U.S. increased by 668 schools. Because Minnesota and Connecticut did not provide specific public and private totals in 2015, they were removed on the sec-

ond line of the 2025 public and private total comparisons shown in Table 3. The numbers for 2025 with two asterisks are the numbers with these states removed. This removal allowed accurate trends to be established. Without Connecticut and Minnesota included, total public schools increased by 515 (3.24%), while total private schools increased by 171 (6.87%).

Table 3

Trends in Interscholastic Competitive Balance: 2015 vs. 2025

Year	Total Schools	Total Public Schools	Total Private Schools	Multiplier	Separate Playoffs	Success Factors	Socioeconomic Factors
2015	19070	15,873*	2,488*	8	4	3	2
2025	19738	16,978 16,388**	2,760 2,659**	20	3	8	9
Total Increase	668	515	171	12	-1	5	7
Percent Change	+3.50%	+3.24%	+6.87%	+150%	-25.00%	+167%	+350%

* In 2015 Connecticut and Minnesota did not supply the number of public and private schools but did supply the total number of schools.

**Public and Private Schools with Connecticut and Minnesota removed to draw accurate comparisons.

Regarding specific competitive balance policies, the number of states that used some form of multiplier increased from eight to 20, indicating a 150% increase. The number of states that had separate playoffs decreased from four to three and was the only type of competitive balance solution that decreased from 2015 to 2025. Associations using a success factor increased from three to eight, a 167% increase. Similarly, socioeconomic factors increased, but more so than success factors. There are currently nine socioeconomic factors compared to two in 2015, a 350% increase.

To determine if significant relationships existed between variables, as well as evaluate any geographical patterns, correlations coefficients were calculated. Table 4 displays the correlation matrix among all variables except NIAAA section. The highest correlation coefficients occurred among total members & total public (.985), total members and total private (.712), and total public & total private (.581). There were no significant relationships among any variable and geographical square miles. For the second geographical variable of NIAAA section, Chi Square analysis revealed no significant relationships among separate playoffs and NIAAA section, $\chi^2 (1, 51) = 5.73, p = .476$; multipliers and NIAAA section, $\chi^2 (1, 51) = 7.25, p = .426$; or legislation (success or socioeconomic) and NIAA section, $\chi^2 (1, 51) = 3.40, p = .905$.

Discussion

Facilitating positive outcomes for student-athletes through their participation

represents a core tenet of meaningful high school athletic programs (Blanton et al., 2024). This updated examination of competitive balance solutions in high school athletics offers governing bodies and interscholastic sport stakeholders insight into how equity is pursued. This decade-long comparison can facilitate internal evaluations by state associations on how their policy can be adapted in the pursuit of fairness. In doing so, these governing bodies can ensure that they are upholding the mission of high school athletics through competitive balance that contributes to meaningful experiences for student-athletes and interscholastic sport stakeholders. The following discussion outlines the presence of varying competitive balance policies within the United States and details the implications within high school athletics via their use.

Competitive Balance Policies

The number of schools who are members of their specific NFHS state association has grown by 3.50% over the previous decade, with a 3.24% increase specifically for public schools and a 6.87% growth in private schools. The increasing membership in NFHS state associations has aligned with the rising use of competitive balance policies. With more members to govern, state associations recognize the importance of promoting fairness as a key tenet of competition, especially with a growing number of private schools. According to the National Center for Education Statistics (NCES), the number of private high schools now represents approximately 13% of all secondary and

Table 4
Correlations Among Members and Policies

	Total Members	Total Public	Total Private	% Private	Separate Playoffs	Multiplier (success or socio- economic)	Legislation (success or socio- economic)	Square Miles
Total Members	1.00							
Total Public	.985 (<.001**)	1.00						
Total Private	.712 (<.001**)	.581 (<.001**)	1.00					
% Private	.076 (.595)	-.045 (.753)	.546 (<.001**)	1.00				
Separate Playoffs	.047 (.742)	.043 (.763)	.047 (.743)	.045 (.752)	1.00			
Multiplier	.022 (.877)	-.009 (.950)	.142 (.321)	.193 (.175)	.129 (.365)	1.00		
Legislation (succ- cess or socioeco- nomic)	.395 (.004*)	.397 (.004*)	.251 (.075)	-.037 (.794)	-.088 (.538)	.103 (.471)	1.00	
Square Miles	.221 (.119)	.253 (.073)	.054 (.706)	-.252 (.074)	-.100 (.485)	-.103 (.474)	.170 (.233)	1.00

*= $p < .05$; **= $p < .01$

high schools in the U.S. (NCES, 2023). Thus, a breakdown of the shifts in competitive balance solutions demonstrates how policies have evolved.

Enrollment Classifications

The most common competitive balance strategy is the use of enrollment classifications, which divide schools into specific classes predominantly based on the number of students. This approach establishes a setting in which schools are competing against others of similar sizes, aligning with the utilitarian perspective of distributive justice. Over time, the growing differences in structure and division within enrollment policy can call into question their fairness and equity. Of the 51 NFHS state associations, 17 states currently utilize enrollment classifications for all sports administered by the governing body. For the remaining 34 associations, some sports fall under a single class, while others utilize a multi-class structure to divide schools.

Despite 17 states still using enrollment classifications for all sports, specific states have adapted their policy to change how they approach these classifications. Five states (i.e., Georgia, Idaho, Kansas, Tennessee, and Texas) moved from having classifications for every sport to a combination of multi-class structures for some sports and a single class structure for others. In contrast, five different states (i.e., Maryland, Nebraska, Rhode Island, South Carolina, and South Dakota) made the transition to have all sports compete within a multi-class system. Even in states who did not change whether a multi-class system was used in every sport or some

sports, policy adjustments have been made in pursuit of competitive balance needs. In Georgia, the 7A classification, which was reserved for the state's biggest schools, was removed to increase competition by merging it with the 6A classification (Townsend, 2024). Conversely, within specific sports in West Virginia (e.g., boys and girls basketball, volleyball), a fourth class was added to the previous three-class system to further divide schools (The Intelligencer, 2023). As individual states continue to fine-tune their competitive balance policies, specific priorities related to athletic experiences are the basis for enrollment classification decisions.

As suggested by the continued restructuring and evolution of enrollment classifications, this approach has limitations when used as the single competitive balance solution. For instance, private schools tend to be smaller in size and are often placed in classes that align with smaller public schools. However, these private schools have inherent advantages over smaller public schools (e.g., recruiting flexibility, financial health) that can lead to disproportionate postseason success compared to their overall representation in the state (Johnson et al., 2019). Additionally, there does come a point where certain public schools are so large that they maintain a talent pool edge over others in their classification, including private schools (Johnson et al., 2014). Given these realities, states who rely solely on enrollment as their means of classifying schools could fail to account for important differences (e.g., public vs. private, socioeconomic factors) that can have a notable impact on competition.

Multipliers

As a growing number of states have committed to competitive balance solutions beyond enrollment, the use of multipliers has increased since 2015 and now range between 1.3 and 3.0. This means, for example, if a state uses a 2.0 multiplier for its private schools, then a private school with 1,000 students would be classified based on an enrollment number of 2,000 students ($2.0 \times 1,000$). Utilizing this type of strategy aims to minimize the advantages of private schools that might not be captured within a pure enrollment classification system (Epstein, 2008). Given this intentional targeting of private schools to neutralize a perceived edge over public schools, multipliers represent an egalitarian strategy of distributive justice by correcting any disadvantages experienced by public schools.

In the original analysis provided by Johnson et al. (2015), eight states utilized some type of multiplier. Today, 20 state associations rely on a multiplier to impact enrollment classifications, representing the second most common competitive balance strategy. This 150% increase highlights the strengthening perspective of states on the need to artificially inflate certain schools' enrollment numbers for classification. Doubling the total enrollment of single-sex schools exists as the most often used form of this multiplier. Three states (i.e., California, Florida, and New Jersey) relied on this approach a decade ago, but this number has now jumped to 16 states increasing enrollment classifications based on single-sex settings by doubling the total enrollment when

calculating the number used for classification purposes. For example, Delaware's policy states that "single gender schools have their enrollment doubled to determine their final enrollment number" (DIAA, 2025, para. 1).

Two states, Alabama and New Mexico, continue to use a blanket enrollment multiplier specifically for private schools in their state, at 1.35 and 1.30 respectively. Unique to New Mexico, this multiplier applies to all sports except football (NMAA, 2025). Other state associations have decided to target their multiplier for specific students, such as South Carolina, who uses a multiplier of 3.0 for students attending a school beyond their geographical area (SCHSL, 2023). This 3.0 multiplier, which is also used by Georgia, embodies the largest number used across state associations, whereas in 2015, multipliers did not exceed 2.0. As evidenced by the range of multipliers, a universal format does not exist for multiplying enrollment classifications.

The effectiveness of multipliers continues to be in question, as private schools experience sustained success despite these manipulated enrollment numbers (Epstein, 2008; Johnson et al., 2019). Although implemented to create more equity in competition, questions persist related to how multipliers can be used in isolation to pursue balance. These considerations include what the appropriate multiplier number should be, how to ensure private schools without a tradition of success are not adversely affected (James, 2013), and how to articulate a formula that achieves the desired goals of a multiplier without

creating unfairness in competition (Epstein, 2008; Johnson et al., 2017). Moreover, these considerations must also account for the potential legal challenges of targeting specific types of schools (James, 2013; Johnson et al., 2017). Therefore, multipliers continue to evolve to account for specific factors (e.g., consistent success or socioeconomic features) in conjunction with enrollment.

Separate Playoffs

The continued disproportionate success of private schools heightens attention on the public versus private school debate (Johnson et al., 2019). While having separate governing bodies works for some states (e.g., Maryland, Texas), the decision for the sole governing body in a state to implement separate playoffs is another approach that has been implemented. Of the competitive balance solutions examined in this updated analysis, a separate playoff structure represents the one policy that has experienced a decline over the past decade. In Johnson et al.'s (2015) seminal study, four state associations (i.e., Georgia, Louisiana, New Jersey, and Tennessee) relied on a public tournament and a private tournament. Since this time, Louisiana has instead implemented two different categories of schools (i.e., select and non-select), with select schools including charter schools, magnet schools, and schools with open enrollment parishes. This change led to nearly even numbers between select and non-select schools to create greater parity within the state's two playoffs (Coppage, 2023).

For the three states still governing separate public and private school playoffs, policy adjustments have leaned further into minimizing potential negative effects of postseason dominance by private schools. Tennessee initially classified schools into either Division I or Division II, with Division II reserved for schools who provided need-based financial aid to varsity athletes. In this system, private schools could still choose to compete in Division I with a 1.80 enrollment multiplier attached. In 2018, the state association unanimously approved a measure that fully separated public and private school playoffs (Hargis, 2018). Further, at the time of the Johnson et al. (2015) study, Georgia limited the separation of public and private playoffs to just its lowest classification (i.e., Class A). That has since expanded to include separate playoffs for each of its three smallest classifications: Class A, Class AA, and Class AAA (Young, 2023). For those states with separate playoffs, these policy evolutions demonstrate further commitment to ensuring distinct structures for public and private schools.

Another example of an egalitarian perspective, separate playoffs aim to eliminate unfair advantages contributing to postseason success for private schools by grouping them into their own individual tournament. However, the low number of state associations utilizing this solution suggests it is not viewed as the ideal approach. Legal concerns have emerged that could result from this structure, particularly from private schools who feel un-

fairly targeted by these policies. There are also economic concerns, as multiple post-season tournaments increase the financial demands of state associations. Some states, such as Ohio, have expressed interest in this solution but refrain from pursuing it in fear of private schools ultimately deciding to establish their own state association (Monahan, 2012). Not only would playoff structures likely change, but separate governing bodies could lead private schools to attract more public-school athletes (Popke, 2012). While separate playoffs can distinguish public schools from private schools within postseason play, the legal and ethical concerns tied to such a policy continue to be a deterrent for most states.

Success Factors

Multipliers and separate playoffs apply policies to entire groups, often private schools. These types of solutions fail to account for nuanced contexts that adversely impact experiences. Instead of merely being public or private, success factors represent a more tailored policy that makes decisions based on athletic performances of individual teams. The type of success used can vary depending on the state, as Connecticut and Indiana utilize a tournament success factor (TSF) that evaluates postseason performance, while Rhode Island considers overall winning percentage.

Five additional states have since incorporated their own type of success factor into their classification process, bringing the total number currently using this pol-

icy to eight. With a 167% increase, trends are moving toward a more specified approach to competitive balance. In some states, such as Wisconsin and Arkansas, success factor points are applied to both public and private schools. Similar to Indiana's TSF (Johnson et al., 2014, 2023), Wisconsin's policy, passed in 2023, examines previous postseason success and assigns points based on how far a team advances in tournament play (e.g., four points for a state championship, three points for state runner-up). If a team earns six points over a three-year window, it moves up one division for the next year. At the point in which a team falls below six points over a three-year timeframe, it then returns to its previous division (Kinnard, 2024). For others, a success factor is reserved for private schools. This is the case for Alabama, in which teams from private schools earn points based on their finish over a two-year period. For teams earning more than four points in single-sex sports (e.g., football, volleyball) and more than seven points in coed sports (e.g., basketball, soccer), they will be moved up one class during the next classification cycle (AHSAA, 2023).

The Pennsylvania Interscholastic Athletic Association incorporated success into its competition classification formula, realizing that “there is general view that enrollment numbers may not clearly indicate equal competition factors and there should be additional items that are needed to be considered in the classification process to keep athletic competition in balance” (PIAA, 2023, para. 1).

Thus, the governing body introduced success points, where success in post-regular season play is rated on a scale of one point (i.e., qualification to an entry level inter-district championship contest) to four points (i.e., qualification to a final inter-district contest). Teams achieving at least six points over a two-year period are eligible to move up a class during the next cycle (PIAA, 2023). In this instance, the success factor exists as just one piece to the overall equation of the classification formula.

As the decade-long trend reveals, there has been greater investment in targeted strategies that focus on individual team success. Not only does this approach ensure competitive balance by moving top teams up in classification, but it also prevents unjust effects on unsuccessful private schools. Despite their utility, however, Johnson et al. (2023) noted that success factors have a primary flaw in punishing athletes who are forced to *play up* after a talented group of their predecessors has done well. To counter this limitation, Johnson et al. (2023) recommended a historical analysis of program success to determine if the success was isolated or if a pattern of achievement exists beyond a rare wave of talented athletes. Doing so “would largely eliminate the biggest criticism of the policy, while still reclassifying schools with the greatest amount of recent and historical success. In essence, the TSF would transform from a short-term blunt instrument into a more sensitive historical application” (p. 51). Continuing to monitor how states account for this issue, while promoting fair and equitable com-

petition, will be important in the ongoing evolution of success factors.

Socioeconomic Factors

The ability of athletic programs to be successful is in part dependent upon access to valuable resources (e.g., facilities, equipment) that can be a differentiator among schools (Yost, 2012). A decade ago, only two states (i.e., Oregon and Oklahoma) had socioeconomic measures as a part of their classification system. That number has risen to nine states, representing the competitive balance solution with the largest increase (350% growth) since the original analysis by Johnson et al. in 2015. Thus, incorporating economic realities into the classification process appears to be a growing priority for state associations.

Certain states have identified specific sports in which socioeconomic factors matter. In Iowa, schools with a high percentage of students receiving free and reduced lunch have historically struggled in football compared to similar sized schools. The policy implemented by the state association reduces 40% of a school’s free and reduced lunch count from its total enrollment and reclassifies the football team based on this new number (Kennedy, 2023). This formula resembles the one implemented by the Minnesota State High School League, who applies their policy to all sports by subtracting 40% of the number of students on free and reduced lunch from a school’s total enrollment for classification purposes (MSHSL, 2025).

Given the varying impact of funding/resources by state, socioeconomic formu-

las can vary greatly. South Dakota utilizes an enrollment subtractor where the percentage of students receiving free and reduced lunch at a school is multiplied by 0.30. The new percentage is then subtracted from the school's total enrollment to provide the number used for classification purposes (SDHSAA, 2022). In Utah, schools with at least 50% of their student population on free and reduced lunch can appeal to be moved down a class (UHSAA, 2025). Regardless of the specific formula, accounting for economic factors aims to address competitive concerns that come from an imbalance of resources (Epstein, 2008; James, 2013).

Similar to success factors, socioeconomic factors align with the libertarian perspective of distributive justice by focusing on the key elements of the individual school when adapting established classifications. As schools move up or down classes based on these contexts, this more fairly targets individual teams based on their unique characteristics, who are better prepared for specifically applied classifications (e.g., athletic success, financial concerns) rather than broadly determined ones (e.g., being a private school). Challenges still exist within these more tailored policies, such as determining the appropriate measure when adjusting based on socioeconomic factors (e.g., free and reduced lunch count). Unintended consequences could also arise when schools are in a particularly wealthy or poor area if the policy cannot be flexible to unique situations. With the trend moving toward more precise competitive balance solu-

tions, however, examining their effectiveness will help to understand their impact.

Relationships. Assessing relationships for additional insight into competitive balance policies also revealed noteworthy results. From a geographical perspective, neither region of the country nor size of the state was related to any type of policy or public/private membership. This result suggests that specific competitive balance policies are not generally reliant on how sparsely situated schools are, or the location within the U.S. More important than geographical considerations was the total number of high schools in the state association.

Both total members (.395) and public members (.397) were significantly related to some type of legislation at $p < .001$ level. These results suggest that the more high schools in a state, the more likely the state is to have some kind of success factor or socioeconomic policy. For example, 11 of the top 14 states with the most schools had a policy that impacted schools for their success or wealth. This result is even more glaring when combined with the 167% increase in success factor policies and 350% increase in socioeconomic policies since 2015. Thus, it appears the more schools there are, the more individual characteristics impact their ability to compete, and an increased need for a policy to counteract such differences. This trend is likely to continue, especially in the wake of the COVID-19 pandemic and worldwide recession that uniquely impacted the resource profiles of school districts.

Limitations

The purpose of this study was to provide an updated examination of the competitive balance policies implemented by state athletic associations. While this research identified policies a decade apart, it did not fully capture the nuanced logic that led to each policy decision, especially when states have different priorities and philosophical approaches. For example, states with a lower proportion of private schools may be less likely to incorporate separate playoff structures. As such, it was beyond the scope of this study to examine state-specific contexts, which would have provided additional insight into the evolution of certain competitive balance solutions. Moreover, the fact that geographical variables did not yield significant results suggests other contextual reasons for specific policies (e.g., political, social, educational) that could be explored through future research.

Second, some states could have passed multiple changes to their policies over the previous decade. Since this examination provided a snapshot of policy at two distinct points in time, only those changes are represented. Thus, this research does not highlight how many policy changes have been made by each state over the last decade, nor the justifications for making these policy changes. This limitation could influence how trends are perceived if multiple policies had been created or eliminated.

Finally, the omissions of two states from Johnson et al.'s 2015 study necessitated the 2025 data be reported in two different ways (see Table 3). A decade ago,

Connecticut and Minnesota did not share the total number of public and private schools, so direct comparisons could not be made. While the data for Connecticut and Minnesota is provided in 2025, and trends are observable for the other 49 state associations, the missing data from these two states in 2015 is a limitation.

Suggestions for Future Research

This updated examination establishes an important foundational analysis of the present competitive balance solutions in high school athletics, as well as the policy trends that have occurred over the last decade. To build on these findings, investigating state-by-state contextual decisions would provide details for different policy types. For example, using qualitative measures that explain why certain state associations have implemented specific solutions could be especially beneficial for states considering a particular policy. Additional research could also examine the motivations and justifications guiding state-specific decisions to certain competitive balance strategies. Moreover, insight on how states with multiple governing bodies function could help states with questions about facilities, scheduling, and officials.

While this research captures the competitive balance solutions that have been implemented and the trends in their usage over time, a valuable follow-up study could examine the effectiveness of policies in upholding the ideals of fairness and equity in high school athletics. These strategies strive to contribute meaningful participation experiences, which empha-

sizes understanding the solutions that are most effective. Developing parameters would inform decision makers on policy construction and implementation. This would further strengthen the current study's results by moving beyond policy identification and trends and into a model of best practices.

Conclusion

Ensuring fair and equitable participation experiences has been a focus of high school athletics within the U.S., especially as the disproportionate success of private schools garners greater attention from key stakeholders. Johnson et al. (2015) conducted the first national analysis of competitive balance policies, which included classifying schools based on enrollment, applying enrollment multipliers, using separate playoff structures for public and private schools, introducing athletic success factors, and accounting for socioeconomic factors. This study offered a contemporary analysis of policy trends over the previous decade and highlighted an increase in the use of multipliers, success factors, and socioeconomic factors. State associations have demonstrated a willingness to implement policies focused on smaller and more specific groups of students as opposed to those broadly focused on enrollment or school type. In fact, these types of policies have more than doubled in the past decade with more than half of the states opting for some form of new policy that impacts enrollment classifications, and larger states more likely to implement a success or socioeconomic factor. Identification of these trends can help

inform the decisions of state associations as they continue to modify competitive balance policy.

References

Alabama High School Athletic Association (2023). *Competitive balance factor using 2-year data*. AHSAA.com. <https://www.ahsaa.com/Schools/2024-2026-Classification-Alignments>

Aspen Institute. (2024). *Project play: Participation Trends*. <https://projectplay.org/state-of-play-2024-participation-trends>

Beauchamp, T. L. (1991). *Philosophical ethics: An introduction to moral philosophy* (2nd ed.). McGraw-Hill.

Blackburn, M. L., Forsyth, E. W. & Smith, S. J. (2025). *NIAAA's Guide to Interscholastic Athletic Administration* (2nd ed.). Human Kinetics.

Blanton, J. E., Pierce, S., & Ault, K. J. (2024). Administrators' perceptions of the meaning and challenges of "education-based" high school sport. *Journal for the Study of Sports and Athletes in Education*, 18(2), 133-157.

Bognar, L., Brave, S. A., Butters, R. A., & Roberts, K. A. (2024). Competitive balance in professional sports: A multi-dimensional perspective. *Sports Economics Review*, 6, 100034.

Bowman, R. A., Lambrinos, J., & Ashman, T. (2018). Prospective measures of competitive balance application to money lines in the national hockey league. *Applied Economics*, 50(46), 4925-4936.

Brocato, R. (2013, April 10). *LHSAA considers Indiana plan, more intense changes*

to save itself. SportsNOLA. <http://www.sportsnola.com/sports/prepsports/blogs/lhsaa-consider-indiana-plan-more-intense-changes-to-save-itself.html>

Christi, C. (2000, June 11). WISAA 1957-2000: Time for a change. *Milwaukee Journal Sentinel*, p. C1.

Coppage, M. (2023, October 4). *Louisiana to continue postseason format of select and non-select schools in major sports.* High School On SI. <https://www.si.com/high-school/louisiana/2023/10/04/louisiana-to-continue-postseason-format-of-select-and-non-select-schools-in-major-sports>

Delaware Interscholastic Athletic Association. (2025, April 15). *School classification.* https://education.delaware.gov/diaa/governance/school_classification/

Doria, M., & Nalebuff, B. (2021). Measuring competitive balance in sports. *Journal of Quantitative Analysis in Sports*, 17(1), 29-46.

Epstein, T. L. (2008). Prep plus: Evaluating the motivations for and effects of enrollment multipliers and other measures in high school sports. *Texas Review of Entertainment and Sports Law*, 10, 1-22.

Flanagan, L. (2022). *Take back the game: How money and mania are ruining kids' sports – and why it matters.* Penguin Random House.

Forsyth, E. W., Fraina, M., Johnson, J. E., Evans, Z. T., & Whisenant, W. A. (2024a). Prevailing priorities for interscholastic athletic directors' pre-recession, post-recession and post COVID: Part I. *Applied Research in Coaching and Athletics Annual*, 39, 66-95.

Forsyth, E. W., Fraina, M., Johnson, J. E., Evans, Z. T., & Whisenant, W. A. (2024b). Prevailing priorities for interscholastic athletic directors' pre-recession, post-recession and post COVID: Part 2. *Applied Research in Coaching and Athletics Annual*, 39, 96-129.

Forsyth, E. W., Fraina, M., Whisenant, W. A., Johnson, J. E., & Scott, B. F. (2022). A mixed-methods approach to identifying coaches' and officials' issues pertinent in interscholastic sports. *Journal of Contemporary Athletics*, 15(2), 65-87.

Fort, R., & Quirk, J. (1995). Cross-subsidization, incentives, and outcomes in professional team sports leagues. *Journal of Economic Literature*, 33(3), 1265-1299.

Fraina, M., Forsyth, E., Johnson, J., & Whisenant, W. (2022, June 2-4). Current issues in interscholastic sport [Conference presentation]. 2022 North American Society for Sport Management Conference, Atlanta, GA.

Frankena, W. K. (1973). *Ethics* (2nd ed.) Prentice-Hall.

Ge, Q., Humphreys, B. R., & Eisert, A. (2025). Vertical integration and competitive balance in professional sports: Evidence from Minor League Baseball. *Journal of Sports Economics*, 26(6), 689-722.

Hall, S. (2023, March 31). *Righting the competitive imbalance in athletics.* American Association of School Administrators. <https://www.aasa.org/resources/resource/righting-competitive-imbalance-athletics>

Hargis, S. (2018, March 15). *TSSAA votes for complete private-public split*. Chattanooga Times Free Press. <https://www.timesfreepress.com/news/2018/mar/14/tssaa-votes-complete-private-public-split/>

Humphreys, B. R. (2002). Alternative measures of competitive balance in sports leagues. *Journal of Sports Economics*, 3(2), 133-148.

James, J. T. (2013). How much does a private school student count? A critical analysis of the athletic multiplier. *Catholic Education: A Journey of Inquiry and Practice*, 10(4), 408-432.

Johnson, J. E., Giannoulakis, C., & Scott, B. F. (2017). Interscholastic competitive balance: An examination of state athletic administrators. *Journal of Sport Management*, 31, 256-274.

Johnson, J. E., Forsyth, E., Whisenant, W., & Stoffer, G. W. (2019). Parents and interscholastic sport: A mixed-method approach to identify salient issues. *Managing Sport and Leisure*, 24, 59-77.

Johnson, J. E., Pierce, D., & Matz, D. (2023). Are we punishing success? An evaluation of the Indiana Tournament Success Factor and implications for interscholastic athletic policy. *Sports Innovation Journal*, 1, 36-54.

Johnson, J. E., Pierce, D. A., Tracy, D. R., & Haworth, G. J. (2014). The public vs. private debate: A case study of Indiana interscholastic sport and the Tournament Success Factor. *Global Sport Business Journal*, 2(3), 44-62.

Johnson, J. E., Tracy, D. R., & Pierce, D. A. (2015). National review of interscholastic competitive balance solutions related to the public-private debate. *Journal of Amateur Sport*, 1(1), 29-51.

Kennedy, W. (2023, January 12). *IHSAA to factor in socioeconomic status to create new Iowa HS football classifications*. Des Moines Register. <https://www.desmoinesregister.com/story/sports/high-school/2023/01/12/ihcaa-football-classification-iowa-board-education-teams-free-reduced-lunches/69804080007/>

Késenne, S. (2015). The optimal competitive balance in a sports league? In P. Rodríguez, S. Késenne, & R. Koning (Eds.), *The economics of competitive sports* (pp. 85-92). Edward Elgar.

Kinnard, B. (2024, July 11). *Punishment? Or a new challenge? How the WIAA's competitive balance plan affects local schools*. NBC26. <https://www.nbc26.com/sports/youth-sports/punishment-or-a-new-challenge-how-the-wiaas-competitive-balance-plan-affects-local-schools>

Lenten, L. J. A. (2015). Measurement of competitive balance in conference and divisional tournament design. *Journal of Sports Economics*, 16(1), 3-25.

Levin, M. A. (2009). The value of competition: Competitive balance as a predictor of attendance in spectator sports. *International Journal of Sports Marketing and Sponsorship*, 11(1), 2-19.

Levin, M. A., & Bailey, B. C. (2012). Competitive balance as a predictor of season attendance among North American non-major sports leagues. *Journal of Global Scholars of Marketing Science*, 22(2), 117-130.

Minnesota State High School League (2025, April 4). *MSHSL classifications and competitive sections for 2025-2026 and 2026-2027 released*. MSHSL.org. <https://www.mshsl.org/about/news/league-news/mshsl-classifications-and-competitive-sections-2025-2026-and-2026-2027>

Miracle, A. W. D., & Rees, C. R. (2010). *Lessons of the locker room: The myth of school sports*. Prometheus Books.

Monahan, S. (2012, January). Public vs. private schools - leveling the playing field. *High School Today*, 5(4), 12-14.

Morrison, K. (2021). *Replication research in education: A guide to designing, conducting, and analyzing studies*. Routledge.

National Center for Education Statistics (2023). *Number of educational institutions, by level and control of institution: Selected years, 2009-10 through 2019-20*. U.S. Department of Education, Institute of Education Sciences. https://nces.ed.gov/programs/digest/d22/tables/dt22_105.50.asp

NIAAA. (2025). *NIAA section map*. <https://niaaa.org/uploads/downloads/NIA-0098-Section-Map-680x540.pdf>

New Mexico Activities Association (2025). *Section IV: Classification and alignment*. New Mexico Activities Association. https://www.nmact.org/file/Section_4.pdf

NFHS. (2024, September 10). *Participation in high school sports tops eight million for first time in 2023-24*. <https://nfhs.org/stories/participation-in-high-school-sports-tops-eight-million-for-first-time-in-2023-24>

Núñez-Pomar, J.M., Calabuig-Moreno, F., & Rodríguez-Guerrero, P. (2018). Sports economics and management: An analysis of five journals indexed in the JCR. *Journal of Sports Economics & Management*, 8(3), 150-171.

Pennsylvania Interscholastic Athletic Association. (2023, November 6). *Competition formula explanation*. <http://www.piaa.org/news/details.aspx?ID=3745>

Perloff, A.. (2025, Spring). The marketing of high school athletes: A rolling tide. *Education Next*, 25(2). <https://www.educationnext.org/marketing-of-high-school-athletes-a-rolling-tide-name-image-likeness/>

Popke, M. (2012, November 12). *Demand to close gap between public, nonpublic schools increases*. Athletic Business. <http://www.athleticbusiness.com/articles/>

Porter, C. (2019). *Competitive balance of schools remains issue in several states*. <https://www.nfhs.org/articles/competitive-balance-of-schools-remains-issue-in-several-states/>

RIIL. (n.d.). *New RIIL Re-Alignment Guidelines*. http://www.schools.com/membersnew/documents/RIIL/20142016_realignment_guidelines.pdf

Robinson, M., Hums, M., Crow, R., & Philips, D. (2001). *Profiles of sport industry professionals: The people who make the games happen*. Jones and Bartlett Learning.

Scott, B. F., Johnson, J. E., Lower, L. M., & Wanless, E. A. (2019). Competitive balance in interscholastic basketball: An examination of policy and non-policy factors. *Journal for the Study of Sports and Athletes in Education*, 13(3), 191-213.

South Dakota High School Activities Association. (2022, April 12). *South Dakota High School Activities Association annual meeting*. <https://www.sdhhsaa.com/BoardOfDirectors/2021-22/AprilAgenda-A.pdf>

Stoffer, G., Johnson, J. E., Walker, K., & Dalgety, M. (2021). Indiana public high school parents' perceptions of interscholastic competitive balance. *Journal of Amateur Sport*, 7(1), 20-44.

The Intelligencer. (2023, December 22). *WVSSAC approves new four-classification system for sports*. <https://www.theintelligencer.net/sports/top-sports/2023/12/wvssac-approves-new-four-classification-system-for-sports>

Townsend, C. (2024, June 27). Whole new ballgame: GHSA reclassifications affect North Atlanta teams. *The Warrior Wire*. <https://www.thewarriorwire.org/14339/sports/whole-new-ballgame-ghsa-reclassifications-affect-north-atlanta-teams/>

Utah High School Activities Association (2025). *Handbook*. UHSAA. <https://www.uhsaa.org/handbook/>

Yost, A. (2012, December 18). *Behind the numbers for OSAA...not fast and loose*. The Corvallis Gazette-Times. [https://www.gazettetimes.com/behind-the-numbers-for-osaa-notso-fast-andloose/article_6fbe4e6c-496c-11e2-a920-001a4bcf887a.html](https://www.gazettetimes.com/behind-the-numbers-for-osaa-not-so-fast-and-loose/article_6fbe4e6c-496c-11e2-a920-001a4bcf887a.html)

Young, L. (2023, October 2). *GHSA ratifies plan to separate Class A through 3A public and private schools for playoffs*. Chattanooga Times Free Press. <https://www.timesfreepress.com/news/2023/oct/02/ghsa-ratifies-plan-to-separate-class-a-through-3a/>

Zimbalist, A. S. (2002). Competitive balance in sports leagues: An introduction. *Journal of Sports Economics*, 3(2), 111-121.

Zimbalist, A. S. (2003). Competitive balance conundrums: Response to Fort and Maxcy's comment. *Journal of Sports Economics*, 4(2), 161-163.