SECTION 260501 GENERAL PROVISIONS - ELECTRICAL

1. GENERAL

- A. The Instructions to Bidders, General and Special Conditions, and all other contract documents shall apply to the Contractor's work as well as to each of his Sub Contractor's work. Each Contractor is directed to familiarize himself in detail with all documents pertinent to this Contract. In case of conflict between these General Provisions and the General and/or Special Conditions, the affected Contractor shall contact the Engineer for clarification and final determination.
- B. The Contractor shall be governed by any alternates, unit prices and Addenda or other contract documents insofar as they may affect his part of the work.
- C. The work included in this division consists of the furnishing of all labor, equipment, transportation, supplies, material and appurtenances and performing all operations necessary for the satisfactory installation of complete and operating electrical systems indicated on the drawings and/or specified herein.
- D. Any materials, labor, equipment or services not mentioned specifically herein which may be necessary to complete or perfect any part of the electrical systems in a substantial manner, in compliance with the requirements stated, implied, or intended in the drawings and specifications, shall be included as part of this Contract. The Contractor shall give written notice of any materials or apparatus believed inadequate or unsuitable; in violation of laws, ordinances, rules or regulations of authorities having jurisdiction; and any necessary items of work omitted a minimum of ten days prior to bid. In the absence of such written notice and by the act of submitting his bid, it shall be understood that the Contractor has included the cost of all required items in his bid, and that he will be responsible for the approved satisfactory functioning of the entire system without extra compensations.
- E. It is not the intent of this section of the specifications (or the remainder of the contract documents) to make any specific Contractor, other than the Contractor holding the prime contract, responsible to the Owner, Architect and Engineer. All transactions such as submittal of shop drawings, claims for extra costs, requests for equipment or materials substitution, shall be done through the Contractor to the Architect (if applicable), then to the Engineer.
- F. This section of the Specifications or the arrangement of the contract documents shall not be construed as an attempt to arbitrarily assign responsibility for work, material, equipment or services to a particular trade Contractor or Sub-Contractor. Unless stated otherwise, the subdivision and assignment of work under the various sections shall be the responsibility of the Contractor holding the prime contract.
- G. It is the intent of this Contract to deliver to the Owner a "like new" project once work is complete. Although plans and specifications are complete to the extent possible, it shall be responsibility of the Contractors involved to remove and/or relocate or re-attach any existing or new systems which interfere with new equipment or materials to be installed by other trades without additional cost to the Owner.
- H. The Contractor shall provide interim life safety and fire detection measures as required by the Authority Having Jurisdiction, Division 1 specifications, NFPA, and applicable Codes. This

includes temporary relocations of heat/smoke detection, exit signage, and egress lighting in existing buildings as applicable.

- In general, and to the extent possible, all work shall be accomplished without interruption of the existing facilities' operations. Each Contractor shall advise the Architect, Owner and Engineer (as applicable) in writing at least one week prior to the deliberate interruption of any services. The Owner shall be advised of the exact time that interruption will occur and the length of time the interruption will occur. Failure to comply with this requirement may result in complete work stoppage by the Contractors involved until a complete schedule of interruptions can be developed.
- J. Whenever utilities are interrupted, either deliberately or accidentally, the Contractor shall work continuously to restore said service. The Contractor shall provide tools, materials, skilled journeymen of his own and other trades as necessary, premium time as needed and coordination with all applicable utilities, including payment of utility company charges (if any), all without request for extra compensation to the Owner, except where otherwise provided for in the contract document.

K. Definitions:

- (1) Prime Contractor The Contractor who has been engaged by the Owner in a contractual relationship to accomplish the work.
- (2) Electrical Contractor Any Contractor whether bidding or working independently or under the supervision of a General Contractor, that is: the one holding the Prime Contract and who installs any type of Electrical work, such as: power, lighting, television, telecommunications, data, fiber optic, intercom, fire detection and alarm, security, video, underground or overhead electrical, etc.

Note: Any reference within these specifications to a specific entity, i.e., "Electrical Contractor" is not to be construed as an attempt to limit or define the scope of work for that entity or assign work to a specific trade or contracting entity. Such assignments of responsibility are the responsibility of the Contractor or Construction Manager holding the prime contract, unless otherwise provided herein.

- (3) Electrical Sub-Contractor Each or any Contractor contracted to, or employed by, the Electrical Contractor for any work required by the Electrical Contractor.
- (4) Engineer The Consulting Mechanical-Electrical Engineers, either consulting to the Owner, Architect, other Engineers, etc.
- (5) Architect The Architect of Record for the project, if any.
- (6) Furnish Deliver to the site in good condition.
- (7) Provide Furnish and install in complete working order.
- (8) Install Install equipment furnished by others in complete working order.
- (9) Contract Documents All documents pertinent to the quality and quantity of all work to be performed on the project. Includes, but not limited to: Plans, Specifications, Addenda,

Instructions to Bidders, (both General and Sub-Contractors), Unit Prices, Shop Drawings, Field Orders, Change Orders, Cost Breakdowns, Construction Manager's Assignments, Architect's Supplemental Instructions, Periodical Payment Requests, etc.

2. INTENT

- A. It is the intent of these specifications and all associated drawings that the Contractor provide finished work, tested, and ready for operation. Wherever the word "provide" is used, it shall mean "furnish and install complete and ready for use."
- B. Minor details not usually shown or specified, but necessary for the proper installation and operation, shall be included in the work, the same as if herein specified or shown.

3. ELECTRICAL DRAWINGS AND SPECIFICATIONS

- A. The drawings are diagrammatic only and indicate the general arrangement of the systems and are to be followed insofar as possible. If deviations from the layouts are necessitated by field conditions, detailed layouts of the proposed departures shall be submitted in writing to the Engineer for review before proceeding with the work. The Contract Drawings are not intended to show every vertical or horizontal offset which may be necessary to complete the systems. Contractors shall, however, anticipate that additional offsets may be required and submit their bid accordingly.
- B. The drawings and specifications are intended to supplement each other. No Contractor or supplier shall take advantage of conflict between them, or between parts of either, but should this condition exist, the Contractor or supplier shall request a clarification of the condition at least ten days prior to the submission of bids so that the condition may be clarified by Addendum. In the event that such a condition arises after work is started, the interpretation of the Engineer shall be the determining factor. In all instances, unless modified in writing and agreed upon by all parties thereto, the Contract to accomplish the work shall be binding on the affected Contractor.
- C. The drawings and specifications shall be considered to be cooperative and complimentary and anything appearing in the specifications which may not be indicated on the drawings or conversely, shall be considered as part of the Contract and must be executed the same as though indicated by both.
- D. The Contractor shall make all his own measurements in the field and shall be responsible for correct fitting. He shall coordinate this work with all other branches of work in such a manner as to cause a minimum of conflict or delay.
- E. The Engineer shall reserve the right to make minor adjustments in location of conduit, fixtures, outlets, switches, etc., where he considers such adjustments desirable in the interest of concealing work or presenting a better appearance.
- F. The Contractor shall evaluate ceiling heights called for on Architectural Plans. Where the location of Electrical equipment may interfere with ceiling heights, the Contractor shall call this to the attention of the Engineer in writing prior to making the installation. Any such changes shall be anticipated and requested sufficiently in advance so as to not cause extra work on the part of the Contractor or unduly delay the work.

- G. Special Note: Always check ceiling heights indicated on Drawings and Schedules and insure that these heights may be maintained after all mechanical and electrical equipment is installed. If a conflict is apparent, notify the Engineer in writing for instructions.
- H. Should overlap of work between the various trades become evident, this shall be called to the attention of the Engineer. In such event neither trade shall assume that he is to be relieved of the work which is specified under his branch until instructions in writing are received from the Engineer.
- I. The drawings are intended to show the approximate location of equipment, materials, etc. Dimensions given in figures on the drawings shall take precedence over scaled dimensions and all dimensions whether given in figures or scaled shall be verified in the field. In case of conflict between small and large scale drawings, the larger scale drawings shall take precedence.
- J. The Contractor and his Sub Contractors shall review all drawings in detail as they may relate to his work (structural, architectural, site survey, mechanical, etc.). Review all drawings for general coordination of work, responsibilities, ceiling clearances, wall penetration points, chase access, fixture elevations, etc. Make any pertinent coordination or apparent conflict comments to the Engineers at least ten days prior to bids, for issuance of clarification by written addendum.
- K. Where on any of the drawings a portion of the work is drawn out and the remainder is indicated in outline, or not indicated at all, the parts drawn out shall apply to all other like portions of the work. Where ornament or other detail is indicated by starting only, such detail shall be continued throughout the courses or parts in which it occurs and shall also apply to all other similar parts of the work, unless otherwise indicated.

4. EXAMINATION OF SITE AND CONDITIONS

- A. The Contractor shall inform himself of all of the conditions under which the work is to be performed, the site of the work, the structure of the ground, the obstacles that may be encountered, the availability and location of necessary facilities and all relevant matters concerning the work. All Contractors or suppliers shall carefully examine all Drawings and Specifications and contract documents to determine the kind and type of materials to be used throughout the project and which may, in any way, affect the execution of his work.
- B. The Contractor shall fully acquaint himself with all existing conditions as to ingress and egress, distance of haul from supply points, routes for transportation of materials, facilities and services, availability of temporary or permanent utilities, etc. The Contractor shall include in his work all expenses or disbursements in connection with such matters and conditions. The Contractor shall verify all work shown on the drawings and conditions at the site, and shall report in writing to the Engineer ten days prior to bid, any apparent omissions or discrepancies in order that clarifications may be issued by written addendum. No allowance is to be made for lack of knowledge concerning such conditions after bids are accepted.

5. EQUIPMENT AND MATERIALS SUBSTITUTIONS OR DEVIATIONS

A. When any Contractor requests review of substitute materials and/or equipment, and when under an approved formal alternate proposal, it shall be understood and agreed that such substitution, if approved, will be made without additional cost regardless of changes in connections, spacing, service, mounting, etc. In all cases where substitutions affect other trades, the Contractor offering

such substitutions shall advise all such Contractors of the change and shall reimburse them for all necessary changes in their work. Any drawings, Specifications, Diagrams, etc., required to describe and coordinate such substitutions or deviations shall be professionally prepared at the responsible Contractor's expense. Special Note: Review of Shop Drawings by the Engineer does not absolve the Contractor of this responsibility

- B. References in the specifications to any article, device, product, material, fixture, form, or type of construction by name, make, or catalog number shall be interpreted as establishing a standard of quality and shall not be construed as limiting competition. Each Contractor, in such cases, may, at his option, use any article, device, product, material, fixture, form, or type of construction which in the judgment of the Engineer is equivalent to that specified, provided the provisions of paragraph (A) immediately preceding are met. Substitutions shall be submitted to the Engineer a minimum of ten days prior to bid date for approval to bid in written form thru addenda or other method selected by the Engineer. If prevailing laws of cities, towns, states or countries are more stringent than these specifications regarding such substitutions, then those laws shall prevail over these requirements.
- C. Wherever any equipment and material is specified <u>exclusively</u> only such items shall be used unless substitution is accepted in writing by the engineers.
- D. The Contractor shall furnish along with his proposal a list of specified equipment and materials which he proposes to provide. Where several makes are mentioned in the Specifications and the Contractor fails to state which he proposes to furnish, the Engineer shall have the right to choose any of the makes mentioned without change in price.
- E. The Contractor shall review the contract documents and if a material substitution form is required for each proposed substitution, it shall be submitted per requirements.

6. SUPERVISION OF WORK

A. Each Contractor and Sub-Contractors shall personally supervise the work or have a competent superintendent on the project site at all times during progress of the work, with full authority to act for him in matters related to the project.

7. CODES, RULES, PERMITS, FEES, REGULATIONS, ETC.

- A. The Contractor shall give all necessary notices, obtain and pay for all permits, government sales taxes, fees, and other costs including utility connections or extensions, in connection with his work. As necessary, he shall file all required plans, utility easement requests and drawings, survey information on line locations, load calculations, etc., prepare all documents and obtain all necessary approvals of all utility and governmental departments having jurisdiction; obtain all required certificates of inspection for his work and deliver same to the Engineer before request for acceptance and final payment for the work.
- B. Ignorance of Codes, Rules, regulations, utility company requirements, laws, etc., shall not diminish or absolve Contractor's responsibilities to provide and complete all work in compliance with such.
- C. The Contractor shall include in the work, without extra cost, any labor, materials, services, apparatus or drawings required in order to comply with all applicable laws, ordinances rules and regulations, whether or not shown on drawings and/or specified.

- D. All materials furnished and all work installed shall comply with the current edition of the National Electrical Codes, National Fire Codes of the National Fire Protection Association, the requirements of local utility companies, and with the requirements of all governmental agencies or departments having jurisdiction.
- E. All material and equipment for the electrical systems shall bear the approval label, or shall be listed by the Underwriters' Laboratories, Incorporated. Listings by other testing agencies may be acceptable with written approval by the Engineer.
- F. All electrical work is to be constructed and installed in accordance with plans and specifications which have been approved in their entirety and/or reflect any changes requested by the State Fire Marshal, as applicable or required. Electrical work shall not commence until such plans are in the hands of the Electrical Contractor.
- G. The Contractor shall insure that his work is accomplished in accord with OSHA Standards and any other applicable government requirements.
- H. Where conflict arises between any code and the plans and/or specifications, the code shall apply except in the instance where the plans and specifications exceed the requirements of the code. Any changes required as a result of these conflicts shall be brought to the attention of the Engineer at least ten working days prior to bid date, otherwise the Contractor shall make the required changes at his own expense. The provisions of the codes constitute minimum standards for wiring methods, materials, equipment and construction and compliance therewith will be required for all electrical work, except where the drawings and specifications require better materials, equipment, and construction than these minimum standards, in which case the drawings and specifications shall be the minimum standards.

8. COST BREAKDOWNS/SCHEDULE OF VALUES

A. Within thirty days after acceptance of the Contract, the Contractor is required to furnish to the Engineer one copy of a detailed cost breakdown on each respective area of work. These cost breakdowns shall be made on forms provided or approved by the Engineer or Architect. Payments will not be made until satisfactory cost breakdowns are submitted. Refer to the end of this section for a sample of expected level and breakout being required.

9. CORRECTION PERIOD

- A. All equipment, apparatus, materials, etc., shall be the best of its respective kind. The Contractor shall replace all materials at his own expense, which fail or are deemed defective as described in the General Conditions. The effective date of completion of the work shall be the date each or any portion of the work is accepted by the Architect or Engineer as being substantially complete.
- B. Items of equipment which have longer guarantees, as called for in these specifications or as otherwise offered by the manufacturer, such as generators, engines, batteries, transformers, etc., shall have warranties and guarantees completed in order, and shall be in effect at the time of final acceptance of the work by the Engineer. The Contractor shall present the Engineer with such warranties and guarantees at the time of final acceptance of the work. The Owner reserves the right to use equipment installed by the Contractor prior to date of final acceptance. Such use of equipment shall in no way invalidate the guarantee except that Owner shall be liable for any damage to equipment during this period due to negligence of his operator or other employee.

10. INSPECTION, APPROVALS AND TESTS

- A. Before requesting a final review of the installation from the Architect and/or Engineer, the Contractor shall thoroughly inspect his installation to assure that the work is complete in every detail and that all requirements of the Contract Documents have been fulfilled. Failure to accomplish this may result in charges from the Architect and/or Engineers for unnecessary and undue work on their part.
- B. The Contractor shall provide as part of this contract electrical inspection by a competent Electrical Inspection Agency, licensed to provide such services in the Commonwealth of Kentucky. The name of this agency shall be included in the list of materials of the Form of Proposal by the Contractor. All costs incidental to the provision of electrical inspections shall be borne by the Electrical Contractor.
- C. For state projects administered by the Kentucky Division of Engineering and Contract Administration the electrical inspection shall be performed throughout the course of construction by a certified electrical inspector from the Kentucky Department of Fire Prevention, Office of Electrical Inspection (502-564-3626). The Contractor shall be responsible for requesting scheduling and coordinating all electrical inspections through the Office of Electrical Inspections; therefore, these inspection fees shall not be included as part of this bid.
- D. The Contractor shall advise each Inspection Agency in writing (with an information copy of the correspondence to the Architect and/or Engineer) when he anticipates commencing work. Failure of the Inspection Agency to inspect the work in the stage following and submit the related reports may result in the Contractor's having to expose concealed work not so inspected. Such exposure will be at the expense of the responsible Contractor.
- E. Inspections shall be scheduled for rough as well as finished work. The rough inspections shall be divided into as many inspections as may be necessary to cover all roughing-in without fail. Report of each such inspection visit shall be submitted to the Architect, Engineer and the Contractor within three days of the inspection.
- F. Approval by an Inspector does not relieve the Contractor from the responsibilities of furnishing equipment having a quality of performance equivalent to the requirements set forth in these plans and specifications. All work under this contract is subject to the review of the Architect and/or Engineer, whose decision is binding.
- G. Before final acceptance, the Contractor shall furnish three copies of the certificates of final approval by the Electrical Inspector (as well as all other inspection certificates) to the Engineer with one copy of each to the appropriate government agencies, as applicable. Final payment for the work shall be contingent upon completion of this requirement.
- H. The Contractor shall test all wiring and connections for cross connects, continuity and grounds before equipment and fixtures are connected, and when indicated or required, demonstrate by continuity/load/voltage test and Megger Test the installation of any circuit or group of circuits. Where such tests indicate the possibility of faulty insulation, locate the point of such fault, replacing same with new and demonstrate by further test the elimination of such defect. The secondary service entrance conductors from the utility (source) transformer to the main service disconnecting means shall be megger tested. The results of this test shall be turned over to the

engineer for review and approval. Any conductor failing the test shall be replaced and any costs associated shall be borne by the contractor.

11. COMPUTER-BASED SYSTEM SOFTWARE

A. For all equipment, controls, hardware, computer-based systems, programmable logic controllers, and other materials provided as a part of the work, software that is installed shall be certified in writing to the Engineer and Owner by the manufacturer and/or writer to be free of programming errors that might affect the functionality of the intended use.

12. CHANGES IN ELECTRICAL WORK

REFER TO GENERAL AND SPECIAL CONDITIONS.

13. CLAIMS FOR EXTRA COST

REFER TO GENERAL AND SPECIAL CONDITIONS.

14. SURVEYS, MEASUREMENTS AND GRADES

- A. The Contractor shall lay out his work and be responsible for all necessary lines, levels, elevations and measurements. He must verify the figures shown on the drawings before laying out the work and will be held responsible for any error resulting from his failure to do so.
- B. The Contractor shall base all measurements, both horizontal and vertical from established bench marks. All work shall agree with these established lines and levels. Verify all measurements at site and check the correctness of same as related to the work.
- C. Should the Contractor discover any discrepancy between actual measurements and those indicated, which prevents following good practice or the intent of the drawings and specifications, he shall notify the Engineer thru normal channels of job communication and shall not proceed with his work until he has received instructions from the Engineer.

15. TEMPORARY USE OF EQUIPMENT

- A. The permanent electrical equipment, when installed, may be used for temporary services, subject to an agreement among the Contractors involved, the Owner, and with the consent of the Engineer. Should the permanent systems be used for this purpose, each Contractor shall pay for all temporary connections required and any replacements required due to damage without cost, leaving the equipment and installation in "as new" condition. The Contractor may be required to bear utility costs, user fees, etc.
- B. Permission to use the permanent equipment does not relieve the Contractors who utilize this equipment from the responsibility for any damages to the building construction and/or equipment which might result because of its use.

16. TEMPORARY SERVICES

A. The Contractor shall arrange for temporary electrical and other services which he may require to accomplish his work. In the absence of other provisions in the contract, the Contractor shall

provide for his own temporary services of all types, including the cost of connections, utility company fees, construction, removal, etc., in his bid.

17. RECORD DRAWINGS

A. The Contractor shall insure that any deviations from the design are being recorded daily or as necessary on record drawings being maintained by the Contractor. Dimensions from fixed, visible permanent lines or landmarks shown in vertical and horizontal ways shall be utilized. Compliance shall be a requirement for final payment. Pay particular attention to the location of underfloor or underground exterior in-contract or utility-owned or leased service lines, main switches and other appurtenances important to the maintenance and safety of the Electrical System. Keep information in a set of drawings set aside at the job site especially for this purpose. Deliver these record drawings electronically to the Engineer in AutoCad 2000 format (or more recent version) along with the hand marked field set. Electronic bid drawings will be furnished to the Contractor for his use at the completion of the work.

18. MATERIALS AND WORKMANSHIP

- A. All electrical equipment, materials and articles incorporated in the work shall be new and of comparable quality to that specified. All workmanship shall be first-class and shall be performed by electricians skilled and regularly employed in their respective trades. The Contractor shall determine that the equipment he proposes to furnish can be brought into the building(s) and installed within the space available. All equipment shall be installed so that all parts are readily accessible for inspection, maintenance, replacement, etc. Extra compensation will not be allowed for relocation of equipment for accessibility or for dismantling equipment to obtain entrance into the building(s).
- B. All conduit and/or conductors shall be concealed in or below walls, floors or above ceilings unless otherwise noted. All fixtures, devices and wiring required shall be installed to make up complete systems as indicated on the drawings and specified herein.
- C. All materials, where applicable, shall bear Underwriters' Laboratories label or that of another Engineer-approved testing agency, where such a standard has been established.
- D. Each length of conduit, wireway, duct, conductor, cable, fitting, fixture and device used in the electrical systems shall be stamped or indelibly marked with the makers mark or name.
- E. All electrical equipment shall bear the manufacturer's name and address and shall indicate its electrical capacity and characteristics.
- F. All electrical materials, equipment and appliances shall conform to the latest standards of the National Electric Manufacturers Association (NEMA) and the National Board of Fire Underwriters (NBFU) and shall be approved by the Owner's insuring agency if so required.

19. QUALIFICATIONS OF WORKMEN

A. All electrical work shall be accomplished by qualified workmen competent in the area of work for which they are responsible. Untrained and incompetent workmen as evidenced by their workmanship shall be relieved of their responsibilities in those areas. The Engineer shall reserve the right to determine the quality of workmanship of any workman and unqualified or incompetent workmen shall refrain from work in areas not satisfactory to him. Requests for relief of a workman shall be made through the normal channels of responsibility established by the Architect or the contract document provisions.

- B. All electrical work shall be accomplished by Journeymen electricians under the direct supervision of a licensed Electrician. All applicable codes, utility company regulations, laws and permitting authority of the locality shall be fully complied with by the Contractor.
- C. Special electrical systems, such as Fire Detection and Alarm Systems, Intercom or Sound Reinforcement Systems, Telecommunications or Data Systems, Lightning Protection Systems, Video Systems, Special Electronic Systems, Control Systems, etc., shall be installed by workmen normally engaged or employed in these respective trades. As an exception to this, where small amounts of such work are required and are, in the opinion of the Engineer, within the competency of workmen directly employed by the Contractor involved, they may be provided by this Contractor.

20. CONDUCT OF WORKMEN

A. The Contractor shall be responsible for the conduct of all workmen under his supervision. Misconduct on the part of any workmen to the extent of creating a safety hazard, or endangering the lives and property of others, shall result in the prompt relief of that workman. The consumption or influence of alcoholic beverages, narcotics or illegally used controlled substances on the jobsite is strictly forbidden.

21. COOPERATION AND COORDINATION BETWEEN TRADES

- A. The Contractor is expressly directed to read the General Conditions and all detailed sections of these specifications for all other trades and to study all drawings applicable to his work, including Architectural, Mechanical, Structural and other pertinent Drawings, to the end that complete coordination between trades will be effected.
- B. Refer to Coordination Among Trades, Systems Interfacing and Connection of Equipment Furnished by Others section of these Specifications for further coordination requirements.

22. PROTECTION OF EQUIPMENT

A. The Contractor shall be entirely responsible for all material and equipment furnished by him in connection with his work and special care shall be taken to properly protect all parts thereof from damage during the construction period. Such protection shall be by a means acceptable to the Engineer. All rough-in conduit shall be properly plugged or capped during construction in a manner approved by the Engineer. Equipment damaged while stored on site either before or after installation shall be repaired or replaced (as determined by the Engineer) by the responsible Contractor.

23. CONCRETE WORK

A. The Contractor shall be responsible for the provision of all concrete work required for the installation of any of his systems or equipment. If this work is provided by another trade, it will not relieve the Electrical Contractor of his responsibilities relative to dimensions, quality of workmanship, locations, etc. In the absence of other concrete specifications, all concrete related to Electrical work shall be 3000 PSI minimum compression strength at 28 days curing and shall conform to the standards of the American Concrete Institute Publication ACI-318. Heavy equipment shall not be set on pads for at least seven days after pour.

B. All concrete pads shall be complete with all pipe sleeves, embeds, anchor bolts, reinforcing steel, concrete, etc., as required. Pads larger than I8" in width shall be reinforced with minimum #4 round bars on 6" centers both ways. All reinforcing steel shall be per ASTM requirements, tied properly, lapped 18 bar diameters and supported appropriately up off form, slab or underlayment. Bars shall be approximately 3" above the bottom of the pad with a minimum 2" cover. All parts of pads and foundations shall be properly rodded or vibrated. If exposed parts of the pads and foundations are rough or show honeycomb after removing forms properly adhered repairs shall be made. If structural integrity is violated, the concrete shall be replaced. All surfaces shall be rubbed to a smooth finish.

<u>Special Note</u>: All pads and concrete lighting standard bases shall be crowned slightly so as to avoid water ponding beneath equipment.

- C. In general, concrete pads for small equipment shall extend 6" beyond the equipment's base dimensions. For large equipment with service access panels, extend pads l8" beyond base or overall dimensions to allow walking and servicing space at locations requiring service access.
- D. Exterior concrete pads shall be 4" minimum above grade and 4" below grade on a tamped 4" dense grade rock base unless otherwise noted or required by utility company. Surfaces of all foundations and bases shall have a smooth finish with three-quarter inch radius or chamfer on exposed edges, trowelled or rubbed smooth. All exterior pads shall be crowned approximately 1/8" per foot, sloping from center for drainage.

24. RESTORATION OF NEW OR EXISTING SHRUBS, PAVING, ETC.

A. The Contractor shall restore to their original condition all paving, curbing surfaces, drainage ditches, structures, fences, shrubs, existing or new building surfaces and appurtenances, and any other items damaged or removed by his operations. Replacement and repairs shall be in accordance with good construction practice and shall match materials employed in the original construction of the item to be replaced. All repairs shall be to the satisfaction of the Engineer, and in accord with the Architect's standards for such work, as applicable.

25. MAINTENANCE OF EXISTING UTILITIES AND LINES

- A. The locations of all piping, conduits, cables, utilities and manholes existing, or otherwise, that come within the contract construction site, shall be subject to continuous uninterrupted maintenance with no exception unless the Owner of the utilities grants permission to interrupt same temporarily, if need be. Provide one week's written notice to Engineer, Architect and Owner prior to interrupting any utility service or line. Also see Article 1. General, this section.
- B. Known utilities and lines as available to the Engineer are shown on the drawings. However, it is additionally required that, prior to any excavation being performed, each Contractor ascertain that no utilities or lines, known or unknown, are endangered by the excavation.

- C. If the above mentioned utilities or lines occur in the earth within the construction site, the Contractor shall first probe and make every effort to locate the lines prior to excavating in the respective area.
- D. Cutting into existing utilities and services shall be done in coordination with and as designated by the Owner of the utility. The Contractor shall work continuously to restore service(s) upon deliberate or accidental interruption, providing premium time and materials as needed without extra claim to the Owner.
- E. The Contractor shall repair to the satisfaction of the Engineer any surface or subsurface improvements damaged during the course of the work, unless such improvement is shown to be abandoned or removed.
- F. Machine excavation shall not be permitted within ten feet of existing gas or fuel lines. Hand excavate only in these areas, in accord with utility company, agency or other applicable laws, standards or regulations.
- G. Protect all new or existing lines from damage by traffic, etc. during construction.
- H. Protect existing trees, indicated to remain with fencing or other approved method. Hold all new subsurface lines outside the drip line of trees, offsetting as necessary to protect root structures. Refer to planting or landscaping plans, or in their absence, consult with the Architect.

26. SMOKE AND FIRE PROOFING

A. The Contractor shall not penetrate rated fire walls, ceilings or floors with conduit, cable, bus duct, wireway or other raceway system unless all penetrations are protected in a code compliant manner which maintains the rating of the assembly. Smoke and fire stop all openings made in walls, chases, ceiling and floors. Patch all openings around conduit, wireway, bus duct, etc., with appropriate type material to smoke stop walls and provide needed fire rating at fire walls, ceilings and floors. Smoke and fire proofing materials and method of application shall be approved by the local authority having jurisdiction.

27. QUIET OPERATION, SUPPORTS, VIBRATION AND OSCILLATION

- A. All work shall operate under all conditions of load without any objectionable sound or vibration, the performance of which shall be determined by the Engineer. Noise from moving machinery or vibration noticeable outside of room in which it is installed, or annoyingly noticeable noise or vibration inside such room, will be considered objectionable. Sound or vibration conditions considered objectionable by the Engineer shall be corrected in an approved manner by the Contractor (or Contractors responsible) at his expense.
- 3. All equipment subject to vibration and/or oscillation shall be mounted on vibration supports suitable for the purpose of minimizing noise and vibration transmission, and shall be isolated from external connections such as piping, ducts, etc., by means of flexible connectors, vibration absorbers or other approved means. Surface mounted equipment such as panels, switches, etc., shall be affixed tightly to their mounting surface.
- C. The Contractor shall provide supports for all equipment furnished by him using an approved vibration isolating type as needed. Supports shall be liberally sized and adequate to carry the

load of the equipment and the loads of attached equipment, piping, etc. All equipment shall be securely fastened to the structure either directly or indirectly through supporting members by means of bolts or equally effective means. No work shall depend on the supports or work of unrelated trades unless specifically authorized in writing by the Architect or Engineer.

28. FINAL CONNECTIONS TO EQUIPMENT

A. The roughing-in and final connections to all electrically operated equipment furnished under this and all other sections of the contract documents or by others, shall be included in the Contract and shall consist of furnishing all labor and materials for connection. The Contractor shall carefully coordinate with equipment suppliers, manufacturer's representatives, the vendor or other trades to provide complete electrical and dimensional interface to all such equipment (kitchen, hoods, mechanical equipment, panels, refrigeration equipment, etc.).

29. WELDING

A. The Contractor shall be responsible for quality of welding done by his organization and shall repair or replace any work not done in accordance with the Architect's or structural Engineer's specifications for such work. If required by the Engineer, the responsible Contractor shall cut at least three welds during the job for X-raying and testing. These welds are to be selected at random and shall be tested as a part of the responsible Contractor's work. Certification of these tests and X-rays shall be submitted, in triplicate, to the Engineer. In case a faulty weld is discovered, the Contractor shall be required to furnish additional tests and corrective measures until satisfactory results are obtained.

30. ACCESSIBILITY

- A. The Contractor shall be responsible for the sufficiency of the size of shafts and chases, the adequate clearance in partitions and above suspended ceilings for the proper installation of his work. He shall cooperate with the General Contractor (or Construction Manager) and all other Contractors whose work is in the same space, and shall advise each Contractor of his requirements. Such spaces and clearances shall be kept to the minimum size required to ensure adequate clearance and access.
- B. The Contractor shall locate all equipment which must be serviced, operated, or maintained in fully accessible positions. Equipment shall include but not be limited to junction boxes, pull boxes, contactors, panels, disconnects, controllers, switchgear, etc. Minor deviations from drawings may be made to allow for better accessibility, and any change shall be approved where the equipment is concealed.
- C. Each Contractor shall provide (or arrange for the provision by other trades) the access panels for each concealed junction box, pull box, fixtures or electrical device requiring access or service as shown on Engineer's plans or as required. Locations of these panels shall be identified in sufficient time to be installed in the normal course of work. All access panels shall be installed in accord with the Architect's standards for such work.
- D. Access Doors; in Ceilings or Walls:
 - (1) In mechanical, electrical, or service spaces:

14 gauge aluminum brushed satin finish, 1" border.

(2) In finished areas:

14 gauge primed steel with 1" border to accept the architectural finishes specified for the space. Confirm these provisions with the Architect prior to obtaining materials or installing any such work.

(3) In fire or smoke rated partitions, access doors shall be provided that equal or exceed the required rating of the construction they are mounted in.

31. ELECTRICAL CONNECTIONS

- A. The Contractor shall furnish and install all power wiring complete from power source to motor or equipment junction box, including power wiring through starters. The Contractor shall install all starters not factory mounted on equipment. Unless otherwise noted, the supplier of equipment shall furnish starters with the equipment. Also refer to Divisions 11, 14, 20, 21, 22, 23 and 25 of the Specifications, shop drawings and equipment schedules for additional information.
- B. All control, interlock, sensor, thermocouple and other wiring required for equipment operation shall be provided by the Contractor. All such installations shall be fully compliant with all requirements of Division 26 and 27 regardless of which trade actually installs such wiring. Motors and equipment shall be provided for current and voltage characteristics as indicated or required. All wiring shall be enclosed in raceways unless otherwise noted.
- C. Each Contractor or sub-contractor, prior to bidding the work, shall coordinate power, control, sensor, interlock and all other wiring requirements for equipment or motors with all other contractors or sub-contractors, to ensure all needed wiring is provided in the Contract. Failure to make such coordination shall not be justification for claims of extra cost or a time extension to the Contract.

32. MOTORS

- A. Each motor shall be provided by the equipment supplier, installer or manufacturer with conduit terminal box and N.E.C. required disconnecting means as indicated or required. Three-phase motors shall be provided with external thermal overload protection in their starter units. Single-phase motors shall be provided with thermal overload protection, integral to their windings or external, in control unit. All motors shall be installed with NEMA-rated starters as specified and shall be connected per the National Electrical Code.
- B. The capacity of each motor shall be sufficient to operate associated driven devices under all conditions of operation and load and without overload, and at least of the horsepower indicated or specified. Each motor shall be selected for quiet operation, maximum efficiency and lowest starting KVA per horsepower as applicable. Motors producing excessive noise or vibration shall be replaced by the responsible contractor. See Division 20, 22 and 23 of the Specifications for further requirements and scheduled sizes.
- C. All three-phase motors shall be tested for proper rotation. Correct wiring if needed and retest. Document testing and corrective action in operations and maintenance manual.

33. CUTTING AND PATCHING

- A. Unless otherwise indicated or specified, the Contractor shall provide cutting and patching necessary to install the work specified in this Division. Patching shall match adjacent surfaces to the satisfaction of the Engineer and shall be in accord with the Architect's standards for such work, as applicable.
- B. No structural members shall be cut without the approval of the Structural Engineer and all such cutting shall be done in a manner directed by him.
- C. When installing conduit, pipe, or any other work in insulated concrete form (ICF) walls, the responsible subcontractor for the work shall provide spray foam insulation to patch the rigid insulation to maintain full integrity of the insulating value of the wall after the mechanical and electrical work is complete. Furthermore all new work shall NOT be installed in concrete center of wall. All mechanical and electrical installations shall be on the interior side of the concrete.

34. ANCHORS

A. Each Contractor shall provide and locate all inserts required for his work before the floors and walls are built, or shall be responsible for the cost of cutting and patching required where inserts were not installed, or where incorrectly located. Each Contractor shall do all drilling required for the installation of his hangers. Drilling of anchor holes may be prohibited in post-tensioned concrete construction, in which case the Contractor shall request approved methods from the Architect and shall carefully coordinate setting of inserts, etc., with the Structural Engineer and/or Architect.

35. WEATHERPROOFING

- A. Where any work pierces waterproofing, including waterproof concrete, the method of installation shall be as approved by the Architect and/or Engineer before work is done. The Contractor shall furnish all necessary sleeves, caulking and flashing required to make openings absolutely watertight.
- B. Wherever work penetrates roofing, it shall be done in a manner that will not diminish or void the roofing guarantee or warranty in any way. Coordinate all such work with the roofing installer.

36. OPERATING INSTRUCTIONS

- A. Upon completion of all work and all tests, each Contractor shall furnish the necessary skilled labor and helpers for operating his systems and equipment for a period of three days of eight hours each, or as otherwise specified. During this period, instruct the Owner or his representative fully in the operations, adjustment, and maintenance of all equipment furnished. Give at least one week's written notice to the Owner, Architect and Engineer in advance of this period. The Engineer may attend any such training sessions or operational demonstrations. The Contractor shall certify in writing to the Engineer that such demonstrations have taken place, noting the date, time and names of the Owner's representative that were present.
- B. Each Contractor shall furnish three complete bound sets for approval to the Engineer of typewritten and/or blueprinted instructions for operating and maintaining all systems and equipment included in this contract. All instructions shall be submitted in draft, for approval,

- prior to final issue. Manufacturer's advertising literature or catalogs will not be acceptable for operating and maintenance instructions.
- C. Each Contractor, in the above mentioned instructions, shall include the maintenance schedule for the principal items of equipment furnished under this contract and a detailed, easy to read parts list and the name and address of the nearest source of supply.
- D. Formatting & content shall follow the guidelines outlined in the latest version of ASHRAE Applications Handbook, Guideline 4. As a minimum, the following shall be included:
 - The operation and maintenance document directory should provide easy access and be well organized and clearly identified.
 - Emergency information should be immediately available during emergencies and should include emergency and staff and/or agency notification procedures.
 - The operating manual should contain the following information:
 - I. General Information
 - a. Building function
 - b. Building description
 - c. Operating standards and logs
 - II. Technical Information
 - a. System description
 - b. Operating routines and procedures
 - c. Seasonal start-up and shutdown
 - d. Special procedures
 - e. Basic troubleshooting
 - The maintenance manual should contain the following information:
 - I. Equipment data sheets
 - a. Operating and nameplate data
 - b. Warranty
 - II. Maintenance program information
 - a. Manufacturer's installation, operation, and maintenance instructions
 - b. Spare parts information
 - c. Preventive maintenance actions
 - d. Schedule of actions
 - e. Action description
 - f. History
 - Test reports document observed performance during start-up and commissioning.

37. SCAFFOLDING, RIGGING AND HOISTING

A. The Contractor shall furnish all scaffolding, rigging, hoisting, and services necessary for erection and delivery into the premises of any equipment and apparatus furnished. Remove same from premises when no longer required.

38. CLEANING

- A. The Contractor shall, at all times, keep the area of his work presentable to the public and clean of rubbish caused by his operations; and at the completion of the work, shall remove all rubbish, all of his tools, equipment, temporary work and surplus materials, from and about the premises, and shall leave the work clean and ready for use. If the Contractor does not attend to such cleaning immediately upon request, the Engineer may cause cleaning to be done by others and charge the cost of same to the responsible Contractor. Each Contractor shall be responsible for all damage from fire which originates in, or is propagated by, accumulations of his rubbish or debris.
- B. After completion of all work and before final acceptance of the work, each Contractor shall thoroughly clean all equipment and materials and shall remove all foreign matter such as grease, dirt, plaster, labels, stickers, etc., from the exterior of materials, equipment and all associated fabrication. Pay particular attention to finished area surfaces such as lighting fixture lenses, lamps, reflectors, panels, etc.

39. PAINTING

A. Each fixture device, panel, junction box, etc., that is located in a finished area shall be provided with finish of color and type as selected or approved by the Architect or Engineer. If custom color is required, it shall be provided at no additional cost to the Owner. All other equipment, fixtures or devices located in finished or unfinished areas, that are not required to have or are provided with finish color or coating shall be provided in a prime painted condition, ready to receive finish paint or coating. All galvanized metal in finished areas shall be properly prepared with special processes to receive finish paint as directed and approved by the Architect.

40. INDEMNIFICATION

A. The Contractor shall hold harmless and indemnify the Engineer, employees, officers, agents and consultants from all claims, loss, damage, actions, causes of actions, expense and/or liability resulting from, brought for, or on account of any personal injury or property damage received or sustained by any person, persons, (including third parties), or any property growing out of, occurring, or attributable to any work performed under or related to this contract, resulting in whole or in part from the negligence of the Contractor, any subcontractor, any employee, agent or representative.

41. HAZARDOUS MATERIALS

- A. The Contractor is hereby advised that it is possible that asbestos and/or other hazardous materials are or were present in this building(s). Any worker, occupant, visitor, inspector, etc., who encounters any material of whose content they are not certain shall promptly report the existence and location of that material to the Contractor and/or Owner. The Contractor shall, as a part of his work, insure that his workers are aware of this potential and what they are to do in the event of suspicion. He shall also keep uninformed persons from the premises during construction. Furthermore, the Contractor shall insure that no one comes near to or in contact with any such material or fumes therefrom until its content can be ascertained to be non-hazardous.
- B. CMTA, Inc., Consulting Engineers, have no expertise in the determination of the presence of hazardous materials. Therefore, no attempt has been made by them to identify the existence or

- location of any such material. Furthermore, CMTA nor any affiliate thereof will neither offer nor make any recommendations relative to the removal, handling or disposal of such material.
- C. If the work interfaces, connects or relates in any way with or to existing components which contain or bear any hazardous material, asbestos being one, then, it shall be the Contractor's sole responsibility to contact the Owner and so advise him immediately.
- D. The Contractor by execution of the contract for any work and/or by the accomplishment of any work thereby agrees to bring no claim relative to hazardous materials for negligence, breach of contract, indemnity, or any other such item against CMTA, its principals, employees, agents or consultants. Also, the Contractor further agrees to defend, indemnify and hold CMTA, its principals, employees, agents and consultants, harmless from any such related claims which may be brought by any subcontractors, suppliers or any other third parties.

42. ABOVE-CEILING AND FINAL PUNCH LISTS

- A. The Contractor shall review each area and prepare a punch list for each of the subcontractors, as applicable, for at least two stages of the project:
 - (1) For review of above-ceiling work that will be concealed by tile or other materials well before substantial completion.
 - (2) For review of all other work as the project nears substantial completion.
- B. When <u>all</u> work from the Contractor's punch list is complete at each of these stages and <u>prior</u> to completing ceiling installations (or at the final punch list stage), the Contractor shall request that the Engineer develop a punch list. This request is to be made in writing seven days prior to the proposed date. After all corrections have been made from the Engineer's punch list, the Contractor shall review and initial off on <u>each</u> item. This signed-off punch list shall be submitted to the Engineer. The Engineer shall return to the site <u>once</u> to review each punch list and all work prior to the ceilings being installed and at the final punch list review.
- C. If additional visits are required by the Engineer to review work not completed by this review, the Engineer shall be reimbursed directly by the Contractor by check or money order (due net 10 days from date of each additional visit) at a rate of \$125.00 per hour for extra trips required to complete either of the above-ceiling or final punch lists.

Phone: (859) 253-0892 - Fax: (859) 231-8357

The following is CMTA's guide for required electrical information relative to the Schedule of Values. Please utilize all items that pertain to this project and add any specialized system as required. A thorough and detailed schedule of values will allow for fair and equitable Pay Application approval and minimize any discrepancies as to the status of the job.

Electrical

Description of Work	Scheduled Value	Labor	Material
Shop Drawings			
Mobilization/Permits			
Temporary Utilities			
Demolition			
Site Utilities			
Switchgear			
Branch Panels			
Feeder Conduit	-		
Branch Conduit	_		
Feeder Wire			
Branch Wiring			
Emergency Generator			
Fire Alarm Conduit & Wiring			
Fire Alarm Devices			
Cabletray & Accessories			

Light Fixture Interior		
Light Fixture Exterior		
Lighting Control System		
Wiring Devices		
Surge Suppression		
Chemical Grounding System		
Intercom/Paging Conduit		
Intercom/Paging Wiring		
Intercom/Paging Devices		
CCTV System Conduit		
CCTV System Wiring		
CCTV System Devices		
Intrusion Detection Conduit		
Intrusion Detection Wiring		
Intrusion Detection Controller & Devices		п
Voice/Data System Conduit		
Voice/Data System Wiring		
Voice/Data System Devices & Termination		
Audio/Video System Conduit		
Audio/Video System Wiring		
Audio/Video System Devices & Termination		
Electrical Inspection		
Owner Training		
Record Drawings		
O & M Manuals		
Punch List / Closeout		

END OF SECTION

SECTION 260502 SCOPE OF THE ELECTRICAL WORK

1. GENERAL

Each Electrical Contractor's attention is directed to Section 260501 - General Provisions, Electrical, and all other Contract Documents as they apply to his work.

2. SCOPE OF THE ELECTRICAL WORK

The Electrical work for this project includes all labor, materials, equipment, fixtures, excavation, backfill and related items required to completely install, test, verify place in service and deliver to the Owner complete electrical systems in accordance with the accompanying plans and all provisions of these specifications. This work shall primarily include, but is not limited to the following:

- A. All conduits, conductors, outlet boxes, fittings, etc.
- B. All switchgear, panels, disconnect switches, fuses, transformers, contactors, starters, etc.
- C. Fault Current Coordination Study.
- D. All wiring devices and device plates.
- E. All light fixtures, drivers, and control systems components.
- F. Electrical connection to all electrically operated equipment furnished and/or installed by others, including powered casework, kitchen equipment, etc.
- G. Digital video surveillance system.
- H. Voice/Data wiring system system to be Cat6A connectivity.
- CATV wiring and distribution system.
- J. Paging/Intercom distribution system.
- K. Master clock distribution system.
- L. Sound reinforcement systems: Gym, Cafeteria, Multipurpose Base Bid. Classrooms Alternate.
- M. Fire alarm voice evacuation and mass notification system.
- N. All necessary coordination with electric utility company, telephone company, cable television company, etc. to insure that work, connections, etc., that they are to provide is accomplished and that service to this facility is delivered complete prior to occupancy.
- O. Paying all necessary fees and cost for permits, inspections, work by utility companies(power, telephone, CATV, etc). The Contractor shall contact the utility companies prior to submitting a bid to determine exactly these charges will be.

P. Prior to submitting a bid, the Contractor shall contact all serving utility companies to determine exactly what each utility company will provide and exactly what is required of the Contractor and the Contractor shall include all such requirements in his base bid.

END OF SECTION

SECTION 260503 SHOP DRAWINGS, LITERATURE, MANUALS, PARTS LISTS, AND SPECIAL TOOLS

SHOP DRAWINGS

- A. Each Contractor shall submit to the Architect and/or Engineer, within thirty days after the date of the Contract, seven sets of shop drawings and/or manufacturer's descriptive literature on all equipment required for the fulfillment of his contract. Each shop drawing and/or manufacturer's descriptive literature shall have proper notation indicated on it and shall be clearly referenced so the specifications, schedules, light fixture numbers, panel names and numbers, etc., so that the Architect and/or Engineer may readily determine the particular item the Contractor proposes to furnish. All data and information scheduled, noted or specified by hand shall be noted in color red on the submittals. The Contractor shall make any corrections or changes required and shall resubmit for final review as requested. Review of such drawings, descriptive literature and/or schedules shall not relieve the Contractor from responsibility for deviation from drawings or specifications unless they have, in writing, directed the reviewer's attention to such deviations at the time of submission of drawings, literature and manuals; nor shall it relieve them from responsibility for errors or omissions of any nature in shop drawings, literature and manuals. The term "as specified" will not be accepted.
- B. If the Contractor fails to comply with the requirements set forth above, the Architect and/or Engineer shall have the option of selecting any or all items listed in the specifications or on the drawings, and the Contractor will be required to provide all materials in accordance with this list.
- C. Review of shop drawings by the Engineer applies only to conformance with the design concept of the project and general compliance with the information given in the contract documents. In all cases, the installing Contractor alone shall be responsible for furnishing the proper quantity of equipment and/or materials required, for seeing that all equipment fits the available space in a satisfactory manner and that piping, electrical and all other connections are suitably located.
- D. The Engineer's review of shop drawings, schedules or other required submittal data shall not relieve the Contractor from responsibility for the adaptability of the equipment or materials to the project, compliance with applicable codes, rules, regulations, information that pertains to fabrication and installation, dimensions and quantities, electrical characteristics, and coordination of the work with all other trades involved in this project.
- E. No cutting, fitting, rough-in, connections, etc., shall be accomplished until reviewed equipment shop drawings are in the hands of the Contractors concerned. It shall be each Contractor's responsibility to obtain reviewed shop drawings and to make all connections, etc. in the neatest and most workmanlike manner possible. Each Contractor shall coordinate with all the other Contractors having any connections, roughing-in, etc., to the equipment, to make certain proper fit, space coordination, voltage and phase relationships are accomplished.
- F. In accord with the provisions specified hereinbefore, shop drawings, descriptive literature and schedules shall be submitted on each of the following indicated items as well as any equipment or systems deemed necessary by the Engineer:

Power Equipment

- Fault current coordination study (submit along with switchgear & panelboards).

- Switchgear and panelboards.
- Circuit breakers or fusible switches, per each type.
- Dry-type transformers.
- Liquid-filled pad-mount transformers and their accessories.
- Power and lighting contactors.
- Disconnect switches.
- Magnetic starters, if not submitted with unit equipment by supplier.
- Control components (relays, timers, selector switches, pilots, etc.)
- Building service grounding electrode components.
- Metering devices.
- Bus duct and each type of fitting for bus duct.
- Transient voltage surge suppression system.
- Grounding system.

Raceways

- Cable tray and each type of cable tray fitting.
- Wireways and each type of wireway fitting.
- Surface-mounted metal or plastic raceways, with each type of fitting.
- J-hook or Bridle ring assemblies.

Devices

- Each type of wiring device and their coverplates.
- Floor boxes, each by type, with required accessories.
- Data/voice/video wallplates, each by type.
- Any special items not listed above.

Lighting

- Light fixtures, each by type, marked to indicate all required accessories and lamp selection. Also provide original color selection chart to allow Architect and/or Engineer to indicate color selection.
- Drivers, each by type.
- Lighting standards or poles.
- Photocells, time clocks or other lighting accessories.
- Lighting control system schematic, functional & programming data, along with building specific floor plan drawings indicating each device, master controller, input device locations and specific interconnect/wiring requirements for each device.

Systems

Note: Each system submittal is to be complete with legible cutsheets for all devices, equipment, special wiring, etc. Include system specific wiring schematics showing each device and its specific interconnect/wiring requirements. For rack mounted equipment, provide a scalable elevation drawing with proposed component locations & specific interconnect wiring requirements for each component/panel. Also provide scale building specific layout drawings that indicate device placement, wiring, etc. Refer to the specific system's specification for additional submittal requirements where required.

- Fire alarm system.

- Closed circuit television security system.
- Building paging/intercom audio system.
- Clock/program system.
- Telephone system.
- Data network.
- Sound reinforcement system(s).
- Wireless intercom system.

Miscellaneous

- Control panel assemblies.
- Non-standard junction/pullboxes.
- Manholes, hand holes, and all outdoor electrical equipment and fittings.

SPECIAL WRENCHES, TOOLS AND KEYS

A. Each Contractor shall provide, along with the equipment provided, any special wrenches or tools necessary to dismantle or service equipment or appliances installed by him. Wrenches shall include necessary keys, handles and operators for valves, switches, breakers, etc. and keys to electrical panels, emergency generators, alarm pull boxes and panels, etc. At least two of any such special wrench, keys, etc. shall be turned over to the Architect prior to completion of the project. Obtain a receipt that this has been accomplished and forward a copy to the Engineer.

FIRE ALARM SHOP DRAWINGS

A. The Contractor and equipment supplier shall submit to the Architect and/or Engineer, fire alarm system shop drawings complete with catalog cuts, descriptive literature and complete system wiring diagrams for their review prior to the Contractor's submittal to the Commonwealth's Department of Housing, Buildings and Construction or other governing authority for their review. No work shall be done until drawings are approved by the Kentucky Department of Housing, Buildings and Construction.

4. MAINTENANCE AND OPERATION MANUALS

- A. Upon substantial completion of the project, the Contractor shall deliver to the Engineers (in addition to the required Shop Drawings) three complete copies of operation and maintenance instructions and parts lists for all equipment provided. Formatting and content shall follow the guidelines outlined in the latest version of ASHRAE Application Handbook, Guideline 4. As a minimum, the following shall be included:
- The operation and maintenance document directory should provide easy access and be well organized and clearly identified.
- Emergency information should be immediately available during emergencies and should include emergency and staff and/or agency notification procedures.
- The operating manual should contain the following information:
 - I. General Information
 - a. Building function
 - b. Building description
 - c. Operating standards and logs

- II. Technical Information
 - a. System description
 - b. Operating routines and procedures
 - c. Seasonal start-up and shutdown
 - d. Special procedures
 - e. Basic troubleshooting
- The maintenance manual should contain the following information:
 - I. Equipment data sheets
 - a. Operating and nameplate data
 - b. Warranty
 - II. Maintenance program information
 - a. Manufacturer's installation, operation, and maintenance instructions
 - b. Spare parts information
 - c. Preventive maintenance actions
 - d. Schedule of actions
 - e. Action description
 - f. History
- Test reports document observed performance during start-up and commissioning.

END OF SECTION

SECTION 260504 SLEEVING, CUTTING, PATCHING AND REPAIRING

1. GENERAL

- A. Where asbestos is encountered, follow requirements for protection and repair.
- B. The Contractor shall be responsible for all openings, sleeves, trenches, etc. that he may require in floors, roofs, ceilings, walls, etc. and shall coordinate all such work with the General Contractor and all other trades. He shall determine and coordinate any openings which he is to provide before submitting a bid proposal in order to avoid conflict and disagreement during construction. Improperly located openings shall be reworked at the expense of the responsible Contractor.
- C. The Contractor shall plan his work ahead and shall place sleeves, frames or forms through all walls, floors and ceilings during the initial construction, where it is necessary for conduit, buss duct, conductors, wireways, etc. to go through; however, when this is not done, this Contractor shall do all cutting and patching required for the installation of his work, or he shall pay other trades for doing this work when so directed by the Architect. Any damage caused to the building by the workmen of the responsible Contractor must be corrected or rectified by him at his own expense.
- D. The Contractor shall cut holes in casework, equipment panels, etc. (if any), as required to pass pipes in and out.
- E. The Contractor shall notify other trades in due time where he will require openings of chases in new concrete or masonry. He shall set all concrete inserts and sleeves for his work. Failing to do this, he shall cut openings for his work and patch same as required at his own expense.
- F. Openings in slabs and walls shall be cut with core drill. Hammer devices will not be permitted. Edges of trenches and large openings shall be scribe cut with a masonry saw.
- G. Cast iron sleeves shall be installed through all walls where pipe enters the building below grade. Sleeves shall be flush with each face of the wall and shall be sufficiently larger than the entering pipe to permit thorough caulking with lead and oakum between pipe and sleeve for waterproofing.
- H. In all cases, sleeves shall be at least two pipe sizes larger than nominal pipe diameter.
- I. Sleeves passing through roof or exterior wall or where there is a possibility of water leakage and damage shall be caulked water tight for horizontal sleeves and flashed and counter-flashed with lead (4 lb.) or copper and soldered to the piping, lapped over sleeve and properly weather sealed. Any roof penetration shall not void or lessen the warranty in any way.
- J. All rectangular or special shaped openings in plaster, stucco or similar materials including gypsum board shall be framed by means of plaster frames, casing beads, wood or metal angle members as required. The intent of this requirements is to provide smooth even termination of wall, floor and ceiling finishes as well as to provide a fastening means for lighting fixtures, panels, etc. Lintels shall be provided where indicated over all openings in bearing walls, etc.
- K. No cutting is to be done at points or in a manner that will weaken the structure and unnecessary cutting must be avoided. If in doubt, contact the Architect.

- L. The Contractor shall be responsible for properly shoring, bracing, supporting, etc. any existing and/or new construction to guard against cracking, settling, collapsing, displacing or weakening while openings are being made. Any damage occurring to the existing and/or new structures, due to failure to exercise proper precautions or due to action of the elements, shall be promptly and properly made good to the satisfaction of the Architect.
- M. All work improperly done or not done at all as required by the Contractor will be performed by others. The cost of this work shall be paid for by the Contractor who is in non-compliance with the Contract.

2. SLEEVES, PLATES AND ESCUTCHEONS

- A. The Contractor shall provide and locate all sleeves required for his work before the floors and surface being penetrated are built, otherwise the Contractor shall core drill for conduits where sleeves were not installed, or where incorrectly located. Core drilling is the only acceptable alternative to sleeves. Do not chisel openings. Where sleeves are placed in exterior walls or in slabs on grade, the space between the conduit and the sleeves shall be made completely and permanently water tight.
- B. Conduits that penetrates fire and/or smoke rated assemblies shall have sleeves installed as required by the manufacturer of the rating seal used.
- C. At all other locations either pipe sleeves or core drilled openings are acceptable.
- D. Where thermal expansion does not occur, the wall may be sealed tight to the conduit.
- E. Sleeves shall be constructed of 24 gauge galvanized sheet steel with lock seam joints or Schedule 40 pipe. Sleeves in floors shall extend 1" above finished floor level.
- F. Fasten sleeves securely in floors, walls, so that they will not become displaced when concrete is poured or when other construction is built around them. Take precautions to prevent concrete, plaster or other materials being forced into the space between pipe and sleeve during construction.
- G. In all areas where ducts are exposed and ducts pass thru floors, the opening shall be surrounded by a 4 inch high by 3 inch wide concrete curb.
- H. Escutcheon plates shall be provided for all conduit passing thru walls, floors and ceilings. Plates shall be nickel plated, of the split ring type, of size to match the pipe or conduit. Where plates are provided for pipes passing thru sleeves which extend above the floor surface, provide deep recessed plates to conceal the sleeves.
- I. When installing conduit, pipe, or any other work in insulated concrete form (ICF) walls, the responsible subcontractor for the work shall provide spray foam insulation to patch the rigid insulation to maintain full integrity of the insulating value of the wall after the mechanical and electrical work is complete. Further more all new work shall NOT be installed in concrete center of wall. All mechanical and electrical installations shall be on the interior side of the concrete.

END OF SECTION

SECTION 260505 DEMOLITION, RESTORATION AND SALVAGE

1. GENERAL

A. Drawings and General Provisions of the Contract, including General and Supplementary Conditions and all other divisions of these specifications apply to work specified in this section.

2. DESCRIPTION OF WORK

- A. This section covers all demolition, restoration and salvage required to perform the electrical work indicated on the drawings, specified and/or as required to complete the project. It is the intent of this section of work to remove all existing electrical equipment, materials, etc. which are not required for the completed building and to restore any and all finished surfaces to their original type and conditions. To accomplish these requirements, the Contractor(s) shall, at his own expense, engage the services of others already performing finish work on this project. All work shall be completed to the satisfaction of the Architect/Engineers whose decisions shall be final. This requirement shall apply to all restoration work whether indicated or specified.
- B. The Contractor shall lawfully dispose of any removed P.C.B.-bearing ballasts (containing polychlorinated biphenyl), and all mercury-vapor bearing lamps, in accordance with all state, local, federal and other applicable laws and regulations.

3. ELECTRICAL

- A. Where electrical fixtures, equipment or other materials are removed and/or relocated, all abandoned conduit and conductors shall be removed in exposed areas. In concealed areas, materials shall be abandoned in place or removed as indicated and patch all openings.
- B. The Contractor shall be responsible for the removal and/or relocation of any electrical equipment, fixtures, devices, appurtenances, etc., which may, in the course of construction, interfere with the installation of any new and/or relocated Architectural, Mechanical, Electrical, Structural or Fire Protection Systems whether indicated or not.

4. REPAIR

A. Unless otherwise indicated, the Contractor shall be responsible for the patching and repairing of all holes, etc. in the ceiling, wall and floors where electrical equipment is removed.

SALVAGE

A. It is the intent of this section to deliver to the Owner all components of any electrical system which may be economically reused by him. The Contractor shall make every effort to remove reusable components without damage and deliver them to a location designated by the Owner.

FND OF SECTION

SECTION 260508 COORDINATION AMONG TRADES, SYSTEMS INTERFACING AND CONNECTION OF EQUIPMENT FURNISHED BY OTHERS

1. COORDINATION

- A. The Contractor is expressly directed to read the General Conditions and all sections of these specifications for all other trades and to study all drawings applicable to his work, including Architectural, Plumbing, Fire Protection, Mechanical and Structural drawings, to the end that complete coordination between trades will be affected. Each Contractor shall make known to all other contractors the intended positioning of materials, raceways, supports, equipment and the intended order of his work. Coordinate all work with other trades and proceed with the installation in a manner that will not create delays for other trades or affect the Owner's operations.
- B. Special attention to coordination shall be given to points where raceways, fixtures, etc., must cross other ducts or conduit, where lighting fixtures must be recessed in ceilings, and where fixtures, conduit and devices must recess into walls, soffits, columns, etc. It shall be the responsibility of each Contractor to leave the necessary room for other trades. No extra compensation or time will be allowed to cover the cost of removing fixtures, devices, conduit, ducts, etc. or equipment found encroaching on space required by others.
- C. The Contractor shall be responsible for coordination with all trades to insure that they have made provision for connections, operational switches, disconnect switches, fused disconnects, etc., for electrically operated equipment provided under this or any other division of the specifications, or as called for on the drawings. Any connection, circuiting, disconnects, fuses, etc., that are required for equipment operation shall be provided as a part of this contract.
- D. If any discrepancies occur between accompanying drawings and these specifications and drawings and specifications covering other trade's work, each trade shall report such discrepancies to the Architect far enough in advance so that a workable solution can be presented. No extra payment will be allowed for relocation of fixtures, devices, conduit, and equipment not installed or connected in accordance with the above instructions.
- E. In all areas where air diffusers, devices, lighting fixtures and other ceiling-mounted devices are to be installed, the Mechanical Trade(s) and the Electrical Trade and the General Trades shall coordinate their respective construction and installations so as to provide a combined symmetrical arrangement that is acceptable to the Architect and Engineer. Where applicable, refer to reflected ceiling plans. Request layouts from the Architect or Engineer where in doubt about the potential acceptability of an installation.

2. INTERFACING

Each Electrical Trade, Specialty Controls Trade, Mechanical Trade and the General Trades, etc., shall insure that coordination is effected relative to interfacing of all systems. Some typical interface points are (but not necessarily all):

- A. Connection of Telecommunications (voice, video, data) lines to Owner's existing or new services.
- B. Connection of Power lines to Owner's existing or new services.

- C. Connection of all controls to equipment.
- D. Electrical power connections to electrically operated (or controlled) equipment.
- E. Electrical provisions for all equipment provided by other trades or suppliers within this contract.

3. CONNECTION OF EQUIPMENT FURNISHED BY OTHERS

- A. Each Contractor shall make all connections to equipment furnished by others, whenever such equipment is shown on any part of the drawings or mentioned in any part of the Specifications, unless otherwise specifically specified hereinafter.
- B. All drawings are complementary, one trade of the other. It is the Contractor's responsibility to examine all drawings and specifications to determine the full scope of his work. The project Engineers have arranged the specifications and drawings in their given order solely as a convenience in organizing the project, and in no way shall they imply the assignment of work to specific trades, contractors, subcontractors or suppliers.
- C. Supervision to assure proper installation, functioning and operation shall be provided by the Contractor furnishing the equipment or apparatus to be connected.
- D. Items indicated on the drawings as rough-in only (RIO) will be connected by the equipment supplier or Owner, as indicated. The Contractor shall be responsible for rough-in provisions only as indicated. These rough-ins shall be in accord with the manufacturer's or supplier's requirements.
- E. For items furnished by others, relocated, or RIO, the Contractor shall obtain from the supplier or shall field determine as appropriate, the exact rough-in locations and connection sizes for the referenced equipment.
- F. The Contractor shall be responsible for coordinating with the General and all other trades, as necessary, to determine any and all final connections that he is to make to equipment furnished by others.

END OF SECTION

SECTION 260519 CONDUCTORS, IDENTIFICATION, SPLICING DEVICES & CONNECTORS

1. GENERAL

- A. This section of the Specifications covers all of the electrical power, lighting, and control power (line voltage) conductors, but does not include communications, data or signal system conductors, which are specified separately in these specifications.
- B. All conduits installed without conductors shall have a 200 lb. test nylon string installed for future use, tied off securely at each end.
- C. No more than 40% conduit fill is permitted for <u>any</u> conduit system, including video, intercom, data, power or other signal circuits unless specifically indicated otherwise on the plans.
- D. Lighting circuits: No more than five conductors shall be installed in conduit except for switch legs and travelers in multi-point switching arrangements.
- E. Receptacle circuits: If multiple circuits are pulled in a single homerun, a dedicated neutral shall be provided for each phase conductor. In these cases, a maximum of seven conductors are permitted in a single conduit. Conductors shall be derated per N.E.C.
- F. Intentional or unintentional painting of exposed low voltage or line voltage cabling is prohibited. The contractor shall ensure that exposed cabling is adequately protected from direct painting or overspray whether painting is required within the electrical specifications or required by other disciplines/trades. The contractor shall review the painting requirements for all disciplines and shall provide cabling protection as required. Where exposed cabling is being installed in exposed ceiling or wall spaces that are required to be painted, the contractor shall provide alternate options for cable colors and shall provide submittals for such cabling to engineer for approval.

2. MATERIALS

A. CONDUCTORS

- (1) All conductors shall be 98% conductive annealed copper unless otherwise noted, UL listed and labeled.
- (2) Lighting and receptacle branch circuits shall be not less than No. 12 copper wire or of the sizes shown on the drawings with Type THW, THHN or THWN insulation. All feeder circuits shall be Type THW or THWN of the size as shown on the Contract Drawings. THHN wiring shall only be installed in overhead, dry or damp locations. THWN or THW wiring shall be used for all circuits pulled in underground or other wet locations.
- (3) Conductors No. 10 and smaller sizes of wire shall be solid. Conductors No. 8 and larger sizes shall be stranded.
- (4) Conductors for fire alarm wiring shall be stranded and in full compliance with N.E.C. 760. All fire alarm conductors shall be installed within conduit and enclosed junction boxes.

- (5) All wire on the project shall be new, in good condition, and shall be delivered in standard coils or reels.
- (6) The color of the wire shall be selected to conform with Section 210-5 of the latest edition of the National Electrical Code. Refer also to 260519-4, Color Coding.
- (7) All equipment grounding conductors shall have green color insulation or if larger than #8, shall be taped for two inches, green color at every termination and pullbox access point.
- (8) Conductors used for motor connections and connections to vibrating or oscillating equipment shall be extra flexible.
- (9) Conductors for main ground from neutral bus, equipment grounding bus, building steel, grounding grid and main cold water pipe connection shall be bare copper.
- (10) All conductors shall be identified by color code and by means of labels placed on conductors in all junction boxes and at each terminal point with Brady, Ideal, T & B or approved equivalent labels indicating source, circuit No. or terminal No.
- (11) Branch wiring and feeder conductors that are greater than 100' in length shall be increased at least one size to compensate for voltage drop. All circuits shall be installed and sized for a maximum 2% voltage drop. As calculated using 80% of the supply breaker rating as the load. Adjust conductors and conduit size accordingly for actual field installed conditions.

B. SPLICING DEVICES & CONNECTORS

- (1) Splicing devices for use on No. 14 to No. 10 AWG conductors shall be pressure type such as T & B "STA-KON", Burndy, Reliable or approved equivalent.
- (2) Wire nuts shall be spring pressure type, insulation 600V, 105°C insulation, up to #8 size. Greater than #6 Cu shall be a compression type connection, 600V insulation, cold shrink tubing, taped to restore full insulation value of the wire being spliced.
- (3) Pressure crimp-applied ring type (or fork with upturned ends) terminations shall be employed on motor and equipment terminals where such terminals are provided on motor and equipment leads or on all stranded wire terminations using No. 10 AWG or smaller conductors.
- (4) Splices, where necessary, shall be made with hydraulically-set "Hy-press" or equivalent crimped connectors. All splices shall be insulated to the full value of the wiring insulation using a cold-shrink kit or the equivalent in built-up materials.
- (5) Large connectors (lugs) at terminals shall be mechanical type, hex-head socket or crimp-on style, installed per the manufacturer's recommendations.
- (6) Exterior underground connections made between bare ground wires or to ground rods shall be exothermically welded, "Cadweld" or equivalent.

- (7) The use of split-bolt clamps will be permitted in wireways at service entrance only. Torque to 55 foot-pounds or as recommended by manufacturer.
- (8) No aluminum conductors shall be used unless otherwise noted.

3. INSTALLATION

- A. The pulling of all wires and cable on this project shall be performed in strict compliance with applicable sections of the National Electrical Code. No conductor entering or leaving a cabinet or box shall be deflected in such a manner as to cause excess pressure on the conductor insulation. Conductors shall only be installed after insulating bushings are in place.
- B. The radius of bending of conductors shall be not less than eighteen times the outside diameter of the conductor insulation or more, if recommended by the manufacturer.
- C. Conductors installed within environmental air plenums shall be per N.E.C. Article 800 and other applicable codes, with FEP-type insulation or an approved equivalent. Also provide plenum-rated tie-wraps where plastic straps or other supports, etc., are installed in plenum areas.
- D. Where indicated, communications conductors that are installed exposed shall not be routed across ceilings or ductwork. They shall be held up against building structure or against permanent support members. They shall be installed in such a manner that they do not interfere with the access to or operation of equipment or removal of ceiling tiles. Tie-wraps shall be installed in such a manner so as to bundle conductors neatly, allowing runouts of single conductors or groups to drop down to equipment served. Install grommeting where dropping out of trays or into panels or service columns. Install sleeves with bushings where penetrating partitions. Firestop sleeves with approved material. Do not penetrate firewalls if so indicated on plans. Refer to the drawings for support requirements and details on routing exposed communications conductors.
- E. Conductors for isolated power systems shall be installed in as short a run of conduit as practicable. No pulling soap shall be used on conductors in isolated power systems.
- F. Where conductors are installed in industrial facilities, they shall be per J.I.C. standards.
- G. Maximum permissible pulling tensions, as recommended by the manufacturer for any given type of cable or wire installed shall not be exceeded. Utilize special remote readout equipment as required to ensure compliance. Use particular caution when installing twisted pair data cable or fiber optic cables -- forces permitted for pulling in are typically very low for these cable types.
- H. All cables and wiring, regardless of voltage, installed in manholes or cable vaults shall be routed in such a manner to provide a minimum of 6 feet of slack cable for future splicing. Install cables along walls by utilizing the longer route from entry to exit. If both routes are symmetrical, provide a loop of cable secured to wall. All cables shall be tied to insulated cable supports on wall-mounted racks, spaced a maximum of three feet apart.
- I. Where multiwire branch circuits are allowed, the phases and neutral shall be wire-tied together in the panelboard and in all pull boxes.
- 4. COLOR CODING DISTRIBUTION VOLTAGE CONDUCTORS, 600 VOLT OR LESS

A. Conductors to be color coded as follows:

(1) 120/208 Volt Conductors

Phase A - Black

Phase B - Red

Phase C - Blue

Neutral - Solid White or White with tracer stripe to match phase conductor

(2) 277/480 Volt Conductors

Phase A - Brown

Phase B - Orange

Phase C - Yellow

Neutral - Solid Gray or White with tracer stripe to match phase conductor

(3) Isolated Power Conductors (Type XLP or XHHN)

Phase A – Brown with colored stripe other than white, green or grey

Phase B Device or Neutral- Orange with colored stripe other than white, green or grey

Phase C - Yellow with colored stripe other than white, green or grey

Neutral on Three-Phase Systems- Solid White or White with tracer stripe to match phase conductor

<u>Note</u>: Further identify isolated power conductors with 2" wide purple tape at all terminations and junctions.

- (4) Control Wiring Red, or as indicated.
- (5) Conductors within enclosures that may be energized when enclosure disconnect is off yellow, or taped with 1/2" yellow tape every 6" of length, inside enclosure. Provide lamacoid plate warning sign on front of enclosure where this condition occurs.
- (6) D.C. Wiring Positive Light Blue Negative - Dark Blue

END OF SECTION

SECTION 260526 GROUNDING AND BONDING

1. GENERAL

- A. All metallic conduit, raceways, cable trays, wireways, supports, cabinets and equipment shall be grounded in accordance with the latest issue of the National Electrical Code, as shown on the Contract Drawings and in accord with the requirements of the local authority having jurisdiction, as applicable.
- B. The size of the equipment grounding conductors, grounding electrode conductors and service grounding conductors shall be not less than that given in Article No. 250 of the National Electrical Code, and/or as shown on the Contract Drawings. Where ungrounded conductor sizes are increased to minimize voltage drop, grounded conductor sizes shall be increased in the proper proportion.
- C. Grounding bus and non-current carrying metallic parts of all equipment and raceway systems shall be securely grounded by connection to common ground.
- D. The service entrance main ground bus shall also be connected to the main cold metallic water pipe within three feet of where it enters the building, on both the house and street sides of the main shut-off valve with a properly sized bonding jumper. A properly sized bonding jumper shall also be provided to the frame of any steel structure utilized in the construction. The steel frame of the building (if any) shall be made electrically continuous.

2. MATERIALS

- A. Ground wires and cables shall be of the AWG sizes shown on the Contract Drawings or shall be sized in accord with the prevailing codes. All ground wires and cables shall be copper.
- B. All grounding fittings shall be heavy cast bronze or copper of the mechanical type except for underground installations or interconnection of grounding grid to cable, columns and ground electrodes, which shall be thermically welded type as manufactured by Cadweld, Burndy Co., Therm-O-Weld, or approved equivalent. Other bonding clamps or fittings in above ground locations shall be as manufactured by O.A. Co., T & B, Burndy, or approved equivalent.
- C. Ground electrode pipe systems shall be solid copper construction. Ground rods shall be 5/8" minimum diameter, eight feet long, copperweld steel. All ground electrode systems shall be installed in accord with manufacturer's recommendations, U.L. listings, National Electrical and National Electrical Safety Codes.

3. INSTALLATION

- A. All grounding conductors shall be protected from mechanical injury and shall be rigidly supported. Where ground conductors are run through flexible conduit and through panelboard switchboard or motor control center feeders, they shall be securely bonded to such conduit thru the use of grounding bushings at the entrance and exit. All connection of equipment shall be made with an approved type of solderless connection and same shall be bolted or clamped to equipment or conduit.
- B. All equipment grounding conductors to lighting fixtures, devices, receptacles, electric heaters, furnace and other equipment not exceeding No. 8 AWG in size shall be green colored Type "THWN".

- C. Equipment ground connections to GFI circuit breakers shall be carried and bonded to each outlet on the circuit. Provide a separate equipment grounding conductor with green color insulation.
- D. Resistance to the grounding at the service entrance equipment shall be in accordance with the N.E.C. for style of construction and shall not exceed ten ohms as measured by the described testing method.
- E. All circuits shall have a separate grounding conductor, except as otherwise noted.
- F. When grounding systems are completely installed and all grading in the area of the service grounding electrode has been completed up to finish elevations, perform a fall-of potential or other approved test to determine actual system resistance to earth. Report results to the Engineer in writing. Refer to testing provisions in this section of specifications.
- G. Where separately-derived systems are utilized as part of the power distribution network, the neutral leg of the secondary side of generators, transformers, etc., shall be connected to a grounding electrode in accordance with the manufacturer's recommendations.
- H. The Contractor shall ensure that the ground return path thru building structural steel or other means is electrically continuous back to the service grounding electrode and is of adequate capacity and impedance to carry the maximum expected fault or other current. Where no electrically continuous steel building frame is available, the Contractor shall provide a properly sized ground bar and ground conductor routed back to the main facility ground bus.
- I. Where a building's steel frame is made electrically discontinuous by masonry breaks (as at firewalls, etc.), the Contractor shall provide an accessible thermically welded bonding jumper of #500MCM copper to bond the building steel frame sections together, making the entire steel frame electrically continuous. The installation of these bonding jumpers shall be reviewed by the Engineer prior to their being covered by construction.
- J. Where lightning protection systems are utilized on the work, their electrodes and conductors shall be electrically segregated from the building service ground, except where connections to structural elements are required for the proper installation of these systems. Lightning protection grounds shall only be utilized for lightning grounding applications, in accord with U.L. and manufacturer's recommendations.
- K. Grounding connections shall <u>never</u> be made to fire protection, natural gas, flammable gas or liquid fuel piping, except where specifically indicated on the plans.
- L. Where dielectric fittings are utilized in piping systems, the piping system shall <u>not</u> be utilized as a ground path. Bonding jumpers shall not be utilized to bridge over such fittings. Piping systems shall <u>not</u> be utilized as ground paths except where specifically required by codes in the case of water piping.

4. GROUNDING ELECTRODE SYSTEM

A. The ground electrode system shall be as specified herein. The system shall not require maintenance throughout the expected life span of the materials.

- B. Ground system shall be an electrolytic rod type, as manufactured by Lyncole XIT Grounding, Superior Grounding Systems, L.E.C., Inc. (Chem-Rod), or approved equivalent. Electrode(s) shall be placed as shown on the plans, installed exactly per manufacturer's recommendations. Electrodes shall be installed vertically, 12 feet of overall length (or length as indicated), set in a drilled hole and backfilled per manufacturer's instructions with a special clay slurry surrounding the rod. Provide a concrete protection box with cast iron grate for the top of the rod termination. Ground system shall be per the following:
 - (1) Manufacturer: Lyncole XIT Grounding (or approved equivalent).
 - (2) Source: Lyncole XIT Grounding, 22412 S. Normandie Ave., Torrance, CA 90502 1-800-962-2610
 - (3) Shaft Configuration: Straight.
 - (4) Shaft Length: 12 feet (or as otherwise indicated).
 - (5) Listings: U.L.-467J, ANSI 633.8.
 - (6) Material: Type K Copper.
 - (7) Construction: Hollow tube, 2.125" O.D., chemical filled with non-hazardous metallic salts.
 - (8) Weight 3.5 lbs. per foot of length, nominal.
 - (9) Ground Wire Termination: Exothermic ("Cadweld" by Contractor) connection to 4/0 conductor, with U-bolt with pressure plate provided as test point.
 - (10) Average Life Expectancy: 25 Years.
 - (11) Model Number: K2-(length)CS.
 - (12) Provide grounding system with the following components: protective box, backfill material. Box to be concrete with cast iron, tamper-resistant lid, backfill to be "Bentonite" clay.
- C. Installation of Pipe Ground System
 - (1) Pipe ground systems shall be installed exactly as required by the system manufacturer. The Contractor shall be diligent to observe the excavation, sealing tape removal, slurry backfill and all other critical requirements.
 - (2) Note: NEVER USE SAND OR ORDINARY EARTH AS A BACKFILL MATERIAL
- D. Pipe grounding system shall be warranted unconditionally by the Contractor for a period of one year from the date of substantial completion.

5. GROUND TESTING PROCEDURE

- A. The actual resistance to earth of the service grounding electrode shall be measured by the Contractor via the fall-of-potential method. This testing shall be accomplished after the grounding electrode has been completely installed and the finished grade is achieved.
- B. The results of the testing shall be summarized in a written report by the Contractor, which shall be forwarded to the Engineer for review. The report shall also be included with the operation and maintenance manuals for the Owner's information and future reference. This report is to also contain a detailed description and illustrations of the testing procedure, along with the name and model number of the testing instrument(s).
- C. For the actual testing, the Contractor shall follow the procedures outlined below. A self-contained instrument such as a "Megger" or "Ground OHMMETER" shall be used that is designed to eliminate the influence of stray current effects on the accuracy of the measurements.

- (1) Connect one side of the instrument to the grounding electrode conductor where it connects to the facility main ground bus (point C1). Disconnect and isolate the grounding electrode conductor for the test.
- (2) Drive a copperweld reference electrode probe (point C2) into earth between 300 and 500 feet away from C1 and connect to measurement instrument.
- (3) Drive the movable grounding probe (C3) into earth at ten equally spaced intervals, in a straight line between C1 and C2 points and note the E/I=R resistance readings on a graph at each point.
- (4) The resistance measurements in OHMS taken from the flat part of the curve shall be averaged to determine the true grounding electrode resistance to earth.
- (5) At completion of testing, remove reference electrode C2 and all temporary wiring and connections.
- (6) If actual measurements of grounding electrode indicate a resistance greater than five OHMS, contact the Engineer for instructions. If deemed necessary by the Engineer, additional electrodes shall be placed and the measurement process repeated until the desired ground potential achieved.

SECTION 260531 CABINETS, OUTLET BOXES AND PULL BOXES

1. GENERAL

- A. This section of the specifications covers all electrical cabinets, outlet boxes and pull boxes.
- B. Continuous runs of conduit shall have properly sized pull boxes at least each eighty-five feet of run, or as near as possible to that limit.

2. MATERIALS & INSTALLATION

A. Cabinets, Outlet and Pull Boxes:

- (1) Cabinets for lighting and power, telephone, pull boxes, outlet boxes, or any other purposes specified or shown on the Contract Drawings, shall be constructed of code gauge, galvanized steel with sides formed and corner seams riveted or welded before galvanizing. Boxes assembled with sheet metal screws will not be accepted. Pull boxes shall include all boxes used to reduce the run of conduit to the required number of feet or bends, supports, taps, troughs, and similar applications and shall also be constructed as specified above.
- (2) All cabinets and boxes for NEMA 1 and 1A application shall be provided with knockouts, as necessary, or shall be cut in the field by approved cutting tools which will provide a clean, symmetrically cut opening. All boxes, except panelboards, shall be provided with code gauge fronts with hex head or pan head screw fasteners. Outdoor cabinets shall be hinged cover with pad locking provisions. Fronts for panelboards shall be as specified for panelboards.
- (3) Ceiling outlet boxes shall be galvanized steel, 4" octagonal, not less than 2 1/8" deep, with lugs or ears to secure covers. Those for use with ceiling lighting fixtures shall be fitted with 3/8" fixture studs fastened to the back of the boxes, where applicable. Provide adequate support with at least a 2 x safety factor for the anticipated fixture weight.
- (4) Special size concealed outlet boxes for clocks, speakers, alarms, panels, etc., shall be provided by the manufacturer of the equipment.
- (5) Floor outlet boxes shall be as specified in Section 262726, fully adjustable unless noted or specified otherwise.
- (6) Unless otherwise noted on the drawings or in the specifications, outlet boxes shall be installed at the following heights to centerline of box:

Wall Switches, Control Stations	3'-10"
Convenience Outlets	1'-6"
Convenience Outlets - Above Counters Bo	ottom at 2" above top of backsplash
T.V. Outlets	1'-6"
T.V. Outlets - At Wall Brackets	7'-2"
Desk Telephones	1'-6"
Wall-Mounted Telephone	4'-6"
Weatherproof Outlets	2'-2"
Disconnects, Branch Panelboards	5'-0" max. to centerline

- (7) The location of outlets, as shown on the drawings, shall be considered as approximate only. It shall be incumbent upon this Contractor to study the general building drawings, with relation to spaces surrounding each outlet, in order to make his work fit the work of others and in order that when the devices or fixtures are installed, they will be symmetrically located and will not interfere with any other work or equipment. Any change in fixture or layout shall be coordinated with and approved by the Engineer before this change is made. Regardless of the orientation shown on the drawings, all devices shall be easily accessible when installed.
- (8) Boxes installed in fire rated assemblies shall not compromise the rating of the assembly. The Contractor is responsible for identifying assembly ratings and construction requirements prior to rough-in.
 - a. Listed single and double gang metallic outlet and switch boxes with metallic or nonmetallic cover plates may be used in bearing and nonbearing wood stud and steel stud walls with rating not exceeding 2 h. The boxes shall be fastened to the studs with the openings in the wallboard facing cut so that the clearance between the boxes and the wallboard do not exceed 1/8 in. The boxes shall be installed so that the surface area of individual boxes do not exceed 16 sq in, and the aggregate surface area of the boxes do not exceed 100 sq in per 100 sq ft of wall surface unless approved alternate protection materials are used.
 - b. Boxes located on opposite sides of walls or partitions shall be separated by a minimum horizontal distance of 24 in. This minimum separation distance between the boxes may be reduced when listed Wall Opening Protective Materials are installed according to the requirements of their Classification.
 - c. Boxes installed on opposite sides of walls or partitions of staggered stud construction shall have listed Wall Opening Protective Materials installed with the boxes in accordance with Classification requirements for the protective materials.
 - d. All installation shall be done in accordance with AHJ requirements.
- (9) All outlets, pull boxes, junction boxes, cabinets, etc., shall be sized per the current edition of the National Electrical Code.
- B. Cabinets, outlet boxes and junction or pull boxes shall be threaded for rigid-threaded conduit, dust-tight, vapor-tight or weatherproof as required for areas other than for NEMA 1 or 1A application. These shall be as manufactured by Crouse-Hinds, Appleton, Killark, or approved equivalent.
 - (1) NEMA 1 or 1A cabinets, outlet boxes or pull or junction boxes shall be as manufactured by Appleton, Steel City, T & B, or approved equivalent.
 - (2) Outlet boxes for switches, receptacles, telephone, etc., concealed in walls shall be galvanized steel, 2" X 4" X 2" with plaster cover for the number of devices as required. Where outlet boxes are installed in walls of glazed tile, brick, concrete block, or other masonry which will not be covered with plaster or in walls covered by wood wainscot or paneling, deep sectional masonry

boxes shall be used and they shall be completely covered with the plates or lighting fixtures. This Contractor shall cooperate with the brick layers, block layers and carpenters to insure that the outlet boxes are installed straight and snugly in the walls. Receptacles shall be set vertically in walls, unless noted otherwise.

- (3) Outlet boxes mounted in glazed tile, brick, concrete block or other types of masonry walls shall be mounted above or below the mortar joint. <u>Do Not Split The Mortar Joint</u>.
- (4) Boxes for more than two devices shall be for the number of devices required and shall be one piece. No ganging of single switch boxes will be allowed.
- (5) Outlets provided shall have only the holes necessary to accommodate the conduit at the point of installation and shall be rigidly secure in position. Boxes with knockouts removed and openings not used shall be replaced or be provided with a listed knockout closure.
- (6) Openings for conduit entrance in cabinets and boxes shall be prefabricated, punched, drilled and/or reamed. The use of a cutting torch for this purpose is prohibited.

SECTION 260533 RACEWAYS & FITTINGS

1. GENERAL

- A. This section is intended to specify the raceways, conduit, conduit fittings, hangers, junction boxes, splice boxes, specialties and related items necessary to complete the work as shown on the drawings and specified herein.
- B. This section specifies basic materials and methods and is a part of each Division 26, 27 and 28 that implies or refers to electrical raceways specified therein.
- C. The types of raceways specified in this section include the following:
 - (1) Steel electrical metallic tubing. (E.M.T.)
 - (2) Rigid galvanized steel conduit. (G.R.S.)
 - (3) Rigid aluminum conduit.
 - (4) Flexible metal conduit (aluminum or steel)
 - (5) Liquid tight flexible metal conduit.
 - (6) Rigid nonmetallic conduit.
 - (7) Surface metal raceways.
 - (8) Wireways, wall ducts and trench ducts.
 - (9) Cable tray or cable trough.
 - (10) Duct banks, and their construction.
- D. All raceways, as listed in 1C. above and otherwise specified herein shall be provided in compliance with latest editions of all applicable U.L., NEMA, N.E.C. and A.N.S.I. standards. All conduit, raceways and fittings shall be Underwriters Laboratories listed and labeled, or bear the listing of an agency acceptable to the local authority having jurisdiction.
- E. Conduit and raceways, as well as supporting inserts in contact with or enclosed in concrete shall comply with the latest edition of all A.C.I. standards and the equipment manufacturer's recommendations for such work.
- F. P.V.C. or other non-metallic conduit shall be rated for the maximum operating temperature that could be developed by the conductors it encloses, while in normal operation.
- G. The decision of the Engineer shall be final and binding in any case where a question or inquiry arises regarding the suitability of a particular installation or application of raceways, supports or materials, if other than outlined herein.
- H. Minimum size of conduit shall be 3/4" trade size. All conduit and raceways shall be sized for the number of conductors contained, in accord with the latest edition of the National Electrical Code or any other applicable standards.
- I. The installer of raceway systems shall avoid the use of dissimilar metals within raceway installations that would result in galvanic-action corrosion.

2. MATERIALS

A. STEEL ELECTRICAL METALLIC TUBING

(1) Electrical metallic tubing, (E.M.T.) of corrosion-resistant steel construction shall be permitted for concealed installation in dry interior locations. Electrical metallic tubing shall not be installed in concrete slabs or where exposed to physical damage. Electrical metallic tubing shall be permitted for exposed work in mechanical and electrical rooms and other exposed structure areas where not subjected to physical damage, as determined by the Engineer.

B. RIGID GALVANIZED STEEL CONDUIT

- (1) Rigid galvanized steel conduit shall be used where subject to physical damage for exposed work in mechanical spaces, within factory or other industrial work areas, for exposed fit-up work on machinery, for exposed exterior damp or wet location work, in hazardous atmospheres, in exterior underground locations where installed beneath roadways, where ells occur in underground P.V.C. conduits, or where turning out of concrete encased duct banks, and at other locations as specifically called out on the drawings.
- (2) Rigid galvanized steel conduit shall be used for all building interior power wiring or cables of over 600 Volts.

C. RIGID ALUMINUM CONDUIT

(1) Rigid aluminum conduit, shall be permitted for installation indoors in dry locations only. Under no conditions shall it be cast into concrete slabs or pass thru construction where prolonged contact will degrade the aluminum. All ells used in rigid aluminum conduit systems shall be rigid galvanized steel. Rigid aluminum conduit shall always be used for power wiring greater than 5 KVA and higher than 60 Hz frequency.

D. FLEXIBLE METAL CONDUIT

(1) Flexible conduit shall be used where permitted by NEC. It may be constructed of aluminum or steel. It shall be installed with connectors designed for the purpose. All flexible metal conduit shall be installed as a single piece. No joints shall be installed. Flexible conduit shall not be used in wet or dusty locations or where exposed to oil, water or other damaging environments. An equipment grounding conductor or bonding jumper shall be used at all flexible conduit installations. Maximum permitted length of flexible metal conduit shall be 72", as for light fixture whips unless approved in writing by Engineer.

E. LIQUIDTIGHT FLEXIBLE METAL CONDUIT

(1) Weatherproof flexible metal conduit shall be wound from a single strip of steel, neoprene covered, equivalent to "Liquatite" or "Sealtite" Type "UA". It shall be installed in such a manner that it will not tend to pull away from the connectors. Provide strain relief fittings equivalent to "Kellems" as required where subject to vibration. Flexible connections to motors in dusty areas shall be dust-tight, in areas exposed to the weather - weatherproof.

F. RIGID NON-METALLIC CONDUIT

(1) Rigid non metallic conduit shall be constructed of P.V.C, nominally schedule 40 weight, except where encased in concrete, where it may be "EB" type. If installation will enclose utility company

- provided conductors, verify exact type required and install in accord with their standards, if more stringent than this specification.
- (2) Rigid non-metallic conduit may be used in exterior wet or damp locations where installed underslab or underground. It shall not be run in interior locations, except with special permission from the Engineer for use in corrosive environments, and then only if protected from physical damage. No rigid nonmetallic conduit may be installed in environmental air plenums or cast into above-grade concrete slabs. No rigid nonmetallic conduit may be installed in locations where the ambient temperature might exceed the rating of the raceway.
- (3) Where rigid non metallic conduit is placed underground, as for feeder circuits, secondaries or branch circuit runs and where ell is made upward thru a slab on grade, transition the turning ell and the riser to rigid steel conduit to a height of 6" above the concrete slab. Transition may then be made to E.M.T or other approved conduit for remainder of run.
- (4) Flexible nonmetallic conduit shall not be used, except by special permission, obtained in writing from the Engineer.
- (5) Provide equipment grounding conductors of copper, sized as required by codes, in all circuits installed in rigid nonmetallic raceways.

G. SURFACE METAL RACEWAYS

- (1) Surface metal raceways shall be constructed of code gauge corrosion-resistant galvanized steel or aluminum extrusions, and finished in an ivory, buff or grey color as selected by the Architect. Finishes shall be suitable for field painting, prepared by the installing contractor as necessary.
- (2) Surface metal raceways, where used as raceways only, shall be sized for the conductors indicated. Nominal minimum size of such raceways shall be equivalent to Wiremold Co. Series #700, or equivalent by Isotrol or other approved manufacturer.
- (3) Surface metal raceways to be furnished with integral receptacles shall have Simplex Nema 5-20R outlets spaced on centers as indicated on plans. These shall be Wiremold Co. #2200 Series or equivalent Isotrol or other approved manufacturer.
- (4) Surface metal raceways and all components and fittings shall be furnished by a single manufacturer, wherever practical. All trim and cover fittings, flush feed boxes, splices, outlet fittings, etc, necessary for a complete installation shall be provided by the installing contractor. These raceways shall be rigidly mounted with approved fasteners on not to exceed 24" centers in a run, or 6" from ends and on either side of a corner. Refer to plans for notations on exact types of these raceways and outlet configurations.

H. WIREWAYS, WALL DUCT, FLUSH FLOOR TRENCH DUCT

(1) WIREWAYS

a. Wireways of painted steel construction shall be corrosion-resistant, moisture and oil resistant where indicated or necessary. Wireways shall be furnished in norminal sizes of 2 1/2" X 2 1/2", 4" X 4", 6"" X 6", 8" X 8" or 12" X 12", as indicated on plans. Furnish with hinged covers on all runs and removable covers on all fittings, to allow a continuous unobstructed path for

- conductor installation. Provide knockouts on all runs, unless otherwise indicated or prohibited by codes.
- b. Provide wireways with hangers of same manufacturer, installed so as to allow unobstructed access to wireway interior. Install at not to exceed 8'-0" centers, closer as needed at fittings and turns. Use 1/4" rod hangers minimum for up to 4"X4", 3/8" rod minimum up to 8"X8", 1/2" rod minimum for 12" X 12".
- c. Wireways shall be equivalent to Square "D" Co. "LD" series, as a minimum standard of construction and quality.

(2) WALL DUCTS

- a. Where wall duct type raceways are indicated to be installed flush, they shall be a minimum 3 1/2" deep by 10" wide (or 18" width, as indicated), furnished with screw covers to overlap flange 1" on each side. Covers shall be furnished in nominal 3'-0" lengths. Provide fully grommeted openings or bushed nipples as needed in coverplates to pass cables thru. Where indicated or required, provide transition fittings between horizontal runs of wireway and wall ducts to properly interface each raceway system.
- b. Where wall ducts are installed flush either vertically or horizontally as a collector duct, provide proper blocking and support in stud walls, adding a layer of studs as needed to prevent undercutting major structural elements of walls. Trim flange shall be set tight to wall surface with 1/16" tolerance each way.
- c. Wall ducts, if indicated to be surface mounted, shall be furnished with flangeless coverplates.
- d. All completed systems shall be provided with a factory prime painted finish, suitable for field finish painting.
- e. Wall ducts shall be equivalent to Square D Company "RWT" Series, as a standard of construction and quality.

(3) TRENCH DUCTS

- a. Trench duct is to be installed flush with finished concrete floor slab with a vertical tolerance to adjacent surfaces of 1/16" plus or minus. Nominal depth of trench duct shall be adjustable from 2 3/8" to 3 1/2", minimum 12" width unless otherwise noted on plans.
- b. Trench duct shall be constructed of code-gauge steel, 14 gauge minimum, with corrosion resistant finish. Surfaces of duct or fittings in contact with concrete shall be painted with two coats of "Asphaltum" or receive equivalent coating or taping prior to placement of concrete.
- c. Furnish trench duct with flat turns, riser transition fittings to wall duct or panelboard as shown, concrete tight couplings, internal barriers as required to separate services, reducers, end closers, tees and all other fittings as indicated or required.
- d. Furnish coverplates of aluminum, 1/4" thickness minimum, with flush fasteners in nominal 24" lengths. Furnish grommeted openings or nipples with insulated bushings as required. Coverplates shall not deflect more than .085" with application of a 200 pound concentrated

- load. Any compartment over 16" in width shall have additional coverplate support, to meet the deflection criteria above.
- e. Provide (as standard) an aluminum tile trim flange (verify and coordinate with floor finishes). Refer to architectural drawings, where applicable.
- f. Trench duct and coverplates shall be equivalent to Square "D" Company RSV/RCP-AL series, as a standard of quality and construction.

CABLE TRAY OR CABLE TROUGH

- (1) Cable tray shall be furnished in all-aluminum construction or galvanized steel construction, as noted and sized on the drawings.
- (2) Galvanized finishes on tray shall be hot-dipped after fabrication for all trays in exterior locations. Mill finished galvanizing may be used where tray is installed indoors in dry locations.
- (3) The installing contractor shall carefully follow the manufacturer's recommendations for hanger sizing and hanger support spacing. The weight per linear foot of tray, fully loaded with a 200% safety factor shall be accounted for in sizing hangers. Refer to manufacturer's instructions and/or the drawings, as applicable for hangers and supports. In no case shall supports be spaced further than 8'-0" apart.
- (4) Cable tray shall be of the ladder type with rungs spaced 12" apart. Side rails shall be of I-Beam or C-Channel construction with welded rungs, depth and width as indicated on the drawings.
- (5) Cable trough shall be similar to cable tray, except bottom shall be a ribbed solid piece, depth and width as indicated on the drawings.
- (6) Cable tray or trough shall be provided with all required fittings for a complete installation. Fittings shall include, but not be limited to: Horizontal and vertical elbows and tees, smooth dropout fittings, end closure plates, fixed (or adjustable) splices as needed for field offsets, reducers, barriers or box connector flanges.
- (7) Cable tray and trough shall be equivalent to Square "D" Company Series CLA/CLG (ladder tray) or CTA/CTG (trough) as a standard of quality and construction.

J. OPEN WIRE MESH CABLETRAY

- (1) Section includes continuous, rigid, welded steel wire mesh cable management system.
- (2) References
 - a. ASTM A 123 Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products.
 - b. ASTM A 510 General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel.
 - c. ASTM B 633 Electrodeposited Coatings of Zinc on Iron and Steel.
- (3) Design Requirements

a. Maximum Deflection Between Supports: L/240.

(4) Submittals

- a. Product Data: Submit manufacturer's product data, including UL classification.
- b. Shop Drawings: Submit shop drawings indicating materials, finish, dimensions, and accessories. Show layout, support, and installation details.
- Manufacturer Qualifications: Submit manufacturer's certification indicating ISO 9002 quality certified.

(5) Delivery, Storage and Handling

- a. Delivery: Deliver materials to site in manufacturer's original, unopened containers and packaging, with labels clearly indicating manufacturer and material.
- b. Storage: Store materials in a dry area indoors, protected from damage, and in accordance with manufacturer's instructions.
- c. Handling: Protect materials and finishes during handling and installation to prevent damage.

(6) Manufacturer

a. Cablofil, Cooper B-line, or approved equivalent. Part numbers included in this section are not meant to restrict truly equivalent manufacturers.

(7) Open Wire Mesh Cabletray System

- a. Description: Continuous, rigid, welded steel wire mesh cable management system.
 - Mesh System: Permitting continuous ventilation of cables and maximum dissipation of heat.
 - 2) Safety Edge: Continuous safety edge T-welded wire lip.
 - 3) Wire Mesh: Welded at all intersections.
- b. UL Classification: Straight sections 4" x 8", 12", and 18 inches.
- c. Material: Carbon steel wire, ASTM A 510, Grade 1008. Wire welded, bent, and surface treated after manufacture.
- d. Finish for Carbon Steel Wire: Finish applied after welding and bending of mesh.
 - 1) Hot-Dip Galvanizing: ASTM A 123. (Only in exterior, wet or corrosive locations)
 - 2) Flat Black: Powder painted surface treatment using ASA 61 black polyester coating. (In indoor dry locations)

e. Nominal Dimensions:

- 1) Nominal Mesh: 2 x 4 inches.
- 2) Nominal Straight Section Lengths: 80 inches and 118 inches.
- 3) Width: [6 inches] [8 inches] [12 inches] [18 inches] [24 inches].
- 4) Depth: Four inches in depth for all but 6" wide, which shall be 2" depth.
- 5) Wire Diameter: Nominal .177 inch, minimum.
- f. Fittings: Field fabricated in accordance with manufacturer's instructions from straight sections.
- g. Support System: Standard.
 - 1) Wall Installation: CS Bracket. Maximum tray width of 12 inches (300 mm).
 - 2) Trapeze Mounting to Ceilings: CS Profile. Maximum tray width of 18 inches (450 mm).
 - 3) Ceiling Installation: CSC Bracket. Maximum tray width of 12 inches (300 mm).
 - 4) Fasteners: As required by tray widths. To be furnished by manufacturer.
- h. Hardware: Hardware, including splice connectors, grounding fittings and support components to be furnished by the manufacturer.
- Grounding: GTA-2-2 grounding lugs for attachment on tray of continuous ground conductor fixing system.

(8) Examination

a. Examine areas to receive cable management system. Notify the Engineer of conditions that would adversely affect the installation or subsequent utilization of the system. Do not proceed with installation until unsatisfactory conditions are corrected.

(9) Installation

- Install open wire mesh cabletray system at locations indicated on the drawings and in accordance with manufacturer's instructions.
- b. Load Span Criteria: Install open wire mesh cabletray system in accordance with span load criteria of L/240.
- c. Cutting:
 - 1) Cut wires in accordance with manufacturer's instructions.
 - 2) Cut wires with side action bolt cutters to ensure integrity of galvanic protective layer.

- 3) Cut each wire with 1 clean cut to eliminate grinding or touch-up.
- d. Install open wire mesh cabletray system using hardware, splice connectors, support components, and accessories furnished by manufacturer.
- e. Coordinate with other trades to provide as straight and accessible runs as possible. Not all offsets are shown on drawings, but Contractor shall make accessible offsets as required around ductwork, structure, piping or other interferences as required.

K. DUCT BANKS

- (1) Duct banks are defined as a raceway or raceways installed in underground locations, enclosed in a steel-reinforced concrete envelope. They shall be installed where indicated on the drawings or otherwise required.
- (2) All concrete used in duct bank construction shall be 3000 PSI minimum 28 day compressive strength unless otherwise noted, in accord with latest A.C.I. standards. Testing of concrete shall be the responsibility of the Contractor, as directed by the engineer. Place concrete against undisturbed earth, or provide forming as needed.
- (3) Duct bank raceways shall receive a minimum of 3" concrete cover all sides. Minimum size of any duct bank shall be 12" x 12" square, in cross section. In all cases, local and national codes shall apply to duct bank construction where they exceed the requirements of this specification.
- (4) Each corner of duct bank shall receive a minimum No. 4 steel reinforcing bar with 2" minimum concrete cover on all sides. Lap bars fifteen diameters at all splices. Provide stirrup bars bury 60" on center to tie bars together. Stirrups may be #3 bar. Reinforcing steel shall be rigidly supported during pour and vibration, and shall be constructed to ASTM standards.
- (5) Support for encased raceways shall be as recommended by raceway manufacturer, spaced 8'-0" maximum on centers, and rigidly fastened to prevent floating of ducts during concrete pours. Supports shall be of a material compatible with the raceway, and shall be of the interlocking type, forming a rigidly braced installation. Provide base type and intermediate type spacers to suit conduit configurations and sizes.
- (6) Where rigid nonmetallic raceways leave concrete duct banks, a transition to rigid steel conduit shall be made 18" inside the concrete envelope. Under no circumstances shall PVC, EB or similar ducts exit concrete envelope, except where duct bank ties into a manhole wall. Provide bell ends at such terminations and dowel duct bank rebars 4" into manhole wall with non-shrink grout. Refer to details on drawings, as applicable. Slope all raceways within duct bank systems such that they shall drain into manholes or pull boxes. Provide proper drainage at manholes or pull boxes to prevent water accumulation.
- (7) Where ducts transition thru manholes, pull boxes or at terminating end, each duct shall be specifically identified. A nomenclature as shown on the drawings or as agreed upon by the installer and engineer shall be utilized to identify each individual duct. A permanent means of identifying each duct, such as engraved lamacoid plates or stamped metal tags shall be used.

L. RACEWAY FITTINGS

- (1) Raceway fittings (or condulets) shall be of gray iron, malleable iron or heavy copper-free cast aluminum. They shall be furnished in proper configurations, avoiding excessive plugged openings. Any openings that are left shall be properly plugged. All coverplates shall be gasketed with neoprene or similar approved materials, rated for the environment.
- (2) Where required, raceway fittings shall be provided in explosion-proof configurations rated for the atmosphere. Place conduit seal off fittings at each device in accord with applicable codes. Seal off fittings shall be packed with wadding, and poured with an approved non-shrink sealing compound.
- (3) Where conduit transitions in a run from a cold to a warm environment, (such as at a freezer, refrigerator or exterior wall) sealoff fittings shall be placed on the warm side immediately at the boundary to prevent migration of condensation within raceway systems.
- (4) Expansion fittings shall be provided at all locations where conduits or other raceways cross over expansion joints. Provide copper ground bonding jumpers across expansion fittings.
- (5) Conduit bodies, junction boxes and fittings shall be dust tight and threaded for dusty areas, weatherproof for exterior locations and vapor tight for damp areas. Conduit fittings shall be as manufactured by Crouse Hinds, Appleton, Killark or approved equivalent. All surface mounted conduit fittings as with "FS", "FD", "GUB" Types etc., shall be provided with mounting hubs.
- (6) Where lighting fixtures, appliances or wiring devices are to be suspended from ceiling outlet boxes, they shall be provided with 3/4" rigid conduit pendants. Outlet boxes shall be malleable iron, provided with self-aligning covers with swivel ball joint and No. 14 gauge steel locking ring. Provide safety chain between building structure and ballast housing of light fixtures for all fixtures, appliances or devices greater than 10 lbs weight. Fixtures shall be installed plumb and level.
- (7) Fittings for threaded raceways shall be tapered thread with all burrs removed, reamed ends and cutting oil wiped clean.
- (8) Fittings for E.M.T. conduit shall be of the compression type. Conduit stops shall be formed in center of couplings. All EMT connectors and couplings shall be of formed steel construction.
- (9) Indentation or die-cast fittings shall not be permitted in any raceway system.
- (10) All conduit fittings shall be securely tightened. All threaded fittings shall be engaged seven full threads. Fasteners shall be properly torqued to manufacturer's recommendations.

M. SUPPORTS AND HANGERS

(1) Supports and hangers shall be installed in accord with all applicable codes and standards. They shall be corrosion - resistant, galvanized or furnished with an equivalent protective coating. All electrical raceways shall be hung independently from the building structure with U.L. listed and approved materials. Hangers and supports depending from the support systems of other trades work shall not be permitted, except with specific approval in writing from the Engineer. The use of tie wire for support or fastening of any raceway system is prohibited. Perforated metal tape shall not be used for raceway support.

- (2) No raceway shall be installed on acoustic tile ceiling tees, or in any location that will impair the functioning, access or code-required clearances for any equipment or system.
- (3) Supports for raceways shall be of materials compatible with the raceway, of malleable iron, spring steel, stamped steel or other approved material. Die-cast fittings are <u>not</u> permitted for supports.
- (4) The installing contractor shall provide all necessary supports and braces for raceways, in a rigid and safe installation, complying with all applicable codes.
- (5) Individual conduits run on building walls or equipment shall be secured by one hole galvanized malleable iron or stamped steel pipe strap or "minerallac" 2-piece straps. The straps are to be anchored by an approved means such as expansion anchors, toggle bolts, through bolts, etc. Where required by codes or other standards, provide spacers behind mounting clamps to space conduits off walls.
- (6) Individual conduits run on building steel shall be secured by means of clamp supports similar and equal to those manufactured by the C.C. Korn Company, Elcen Co., B-Line or approved equivalent. Provide korn clamps, bulb tee clamps, flange clamps, beam clamps, "minerallacs", etc.
- (7) Where feasible, vertical and/or horizontal runs of conduit shall be grouped in common hangers on "trapezes" of channel stock as manufactured by "Unistrut" or equivalent, 1-5/8" minimum depth, 12 gauge. Utilize conduit clamps appropriate to the channel.
- (8) Channel strut systems for supporting electrical equipment or raceways in outdoor wet or corrosive locations shall be constructed of 12 gauge minimum hot dip galvanized steel with 9/16" diameter holes on 8" centers, with finish coat of paint as manufactured by Unistrut, B-Line, Kindorf, or approved equivalent. In indoor dry locations, factory finish paint will be acceptable.
- (9) The minimum diameter of round all-thread steel rods used for hangers and supports shall be 1/4", 20 threads per inch. All-thread rod shall be furnished with a corrosion-resistant finish.
- (10) Welding directly on conduit or fittings is not permitted.
- (11) Provide riser support clamps for vertical conduit runs. Riser support clamps shall be of heavy gauge steel construction. Install riser support clamps at each floor level penetration, or as otherwise required.
- (12) Provide conduit cable support clamps for vertical conductor runs as required or indicated on plans. Clamps to be insulating wedging plug, with malleable iron support ring. Install within properly sized and anchored junction box.
- (13) Spring steel clips and fittings such as those manufactured by HITT-Thomas, Caddy-Erico, or approved equivalent, with black oxide finish are permitted in any indoor dry location for concealed work, where acceptable to the local authority having jurisdiction.

3. INSTALLATION

A. This Contractor shall lay out and install all conduit systems so as to avoid any other service or systems, the proximity of which may prove injurious to the conduit, or conductors which it confines. All conduit systems, except those otherwise specifically shown to the contrary, shall be concealed in

- the building construction or run above ceilings. Size of all conduit shall as a minimum conform to the National Electrical Code, unless larger size is indicated on the Contract Drawings.
- B. No conduit larger shall be installed in poured concrete slabs except with permission of the structural engineer. All other shall be held below slab. Conduit shall be held at least 6" from flues or hot water pipes.
- C. All exposed conduit shall be installed with runs parallel or perpendicular to walls, structural members or intersections of vertical planes and ceilings, with right angle turns consisting of cast metal fittings or symmetrical bends unless otherwise shown. All conduit shall have supports spaced not more than eight feet apart.
- D. Conduit shall be installed in such a manner so as to insure against collection of trapped condensation. All runs of conduit shall be arranged so as to be devoid of traps. Trapped conduit runs shall be provided with explosion proof drains at low points. Runs of conduit between junctions shall not have more than the equivalent of three 90° bends.
- E. Junction boxes shall be installed so that conduit runs will not exceed 85', as shown on the Contract Drawings.
- F. Underground electric, cable TV, telephone service or other rigid steel conduit and underfloor rigid steel conduit below the concrete floor slab shall be painted with two coats of bitumastic paint, such as "Asphaltum".
- G. All underground or underfloor conduits shall be swabbed free of all moisture and debris before conductors are pulled.
- H. At least two 1 inch and four 3/4 inch conduits shall be stubbed from flush-mounted panelboards into the nearest accessible area for future use. Provide suitable closures for these stubs. Identify each stub with a suitable hang tag.
- Install electrical raceways in accordance with manufacturer's written instructions, applicable requirements of latest edition of the N.E.C., and NECA "Standard of Installation", complying with recognized industry practices.
- J. Coordinate with other trades, including metal and concrete deck trades, as necessary to interface installation of electrical raceways and components.
- K. Level and square raceway runs, and install at proper elevations and required heights. Hold tight to structure or route through joists webbing wherever possible, to maximize available space and not restrict other trades.
- L. Complete installation of electrical raceways before starting installation of cables or wires within raceways.
- M. All underground conduits shall be buried to minimum depth of 24" from the top of the concrete encasement or raceway to finished grade, unless otherwise noted on plans. Observe minimum burial requirements of local utility company where their standards or regulations apply. Conduits containing primary power conductors, (higher than 600 volts to ground) shall be 42" to top below finished grade, unless otherwise noted on plans.

N. All raceways shall be installed to maintain a minimum of 4" clearance below roof decking.

4. SPECIALTIES

- A. All EMT terminations at junction boxes, panels, etc. shall be made with case hardened locknuts and appropriate fittings, with insulated throat liners. Insulating terminations shall be manufactured as a single unit. The use of split sleeve insulators is <u>not</u> permitted.
- B. All rigid conduit, except main and branch feeders, shall have heavy fiber insulating bushings reinforced with double locknuts. All branch and main feeders shall have insulated bushings with grounding lugs and shall be bonded to enclosures with appropriately sized copper jumpers, except at pad mounted transformers. Bonding jumpers shall be installed as required by the N.E.C. and other applicable codes.
- C. All conduit stubbed through floor during construction shall have openings protected with plastic caps approved for this purpose. Connections on both ends of all flexible conduit shall be equivalent to Thomas and Betts, Ideal, Appleton, Efcor, or approved equivalent, rated for the environment.
- D. All pulling lines left in open conduit systems shall be non-metallic, left securely tied off at each end.
- E. Where spare raceways terminate in switchboards or motor control centers a fishtape barrier shall be provided.

SECTION 260553 IDENTIFICATIONS

1. GENERAL

- A. Equipment, disconnect switches, motor starters, pushbutton stations, special device plates, and similar materials shall be clearly marked as to their function and use. Markings shall be applied neatly and conspicuously to the front of each item of equipment with 1/2" white lamacoid plate (or equivalent) with black letters 1/4" high.
- B. The Contractor shall provide clearly legible typewritten directories in each electrical panel indicating the area, item of equipment, etc., controlled by each switch, breaker, fuse, etc. These directories are to be inserted into plastic card holders in each panel. The Contractor shall be required to demonstrate the accuracy of the panel directory for a random sampling of circuits in each panelboard as directed in the field by the Engineer with corrections made immediately so it is imperative that care be taken during installation to insure 100% accurate directories.
- C. Branch circuit panelboards and switch gear shall be provided with a white lamacoid plastic plate with 1/2" black letters for panel designation and 1/4" black letters showing voltage and feeder information. Branch circuit switches shall be designated as to function. Panelboard and switchgear labels shall indicate the source they are fed from, and the circuit number at that source. Panelboards shall also indicate color coding of the branch circuit phase conductors supplied. Clearly indicate the exact label legend to be furnished with each panelboard and switchgear on the shop drawings for each item of equipment prior to submission of shop drawings.

EXAMPLE:

PANEL "XYZ"
FED FROM "MDP – 2"
120/ 208/ 3PH/ 4W – 225A
BLACK-RED-BLUE
CONDUCTORS

- D. Where branch circuit panelboards and switchgear are connected to an emergency source, the lamacoid plate shall be red, and the word "emergency" shall be incorporated into the legend. In healthcare applications, the NEC designated branch (life safety, critical or equipment branch) shall also be incorporated into the legend, all in ¼" letters. Also provide similar plates and legends for automatic transfer switches, and equipment disconnects 100 amps and larger.
- E. Lamacoid plates shall be located at center of top of trim for branch circuit panels, switch gear, and centered at side for branch circuit switches. Fasten with self-tapping stainless steel screws or other approved method.
- F. The building service disconnect(s) shall be marked with the maximum available fault current available at that location in accordance with NEC Article 110. If a fault current study is not required by this contract, the Contractor shall obtain fault current availability data from the utility company. This requirement applies to both new and existing services if any distribution equipment is changed.

SECTION 262450 ELECTRICAL DISTRIBUTION TRANSFORMERS

1. GENERAL

A. All electrical distribution transformers shall be dead front UL listed for the purpose and application. All equipment shall meet or exceed all applicable requirements of the National Electrical Code (N.E.C.).

2. QUALITY ASSURANCE

- A. Manufacturer shall be ISO 9001 certified.
- B. Transformers shall be CSA certified and UL listed [CE certified outside North America],
- C. Transformers shall be factory tested to CSA C9,
- D. Transformers shall meet all relevant CSA, EPA, IEEE, NEMA, NFPA, and UL standards.

3. SHOP DRAWING SUBMITTALS

- A. Submit shop drawings, in accordance with Section 260503 Submittals, that includes:
 - (1) Enclosure dimensions,
 - (2) Mounting devices,
 - (3) Terminals,
 - (4) Taps,
 - (5) Internal and external component layout,
 - (6) Amperage (neutral),
 - (7) kVA rating,
 - (8) Voltage,
 - (9) Frequency,
 - (10) BIL,
 - (11) Insulation class.
 - (12) Efficiency

4. INSTALLATION INSTRUCTIONS

- A. All Transformers shall be installed within 10 linear wire feet of the secondary means of disconnect, or a N.E.C. compliant means of disconnect shall be provided.
- B. A minimum of six (6") inch air gap shall be provided between transformer and wall if located adjacent to wall.
- C. Provide a 4" concrete house keeping pad for all floor mounted transformers in accordance with A.C.I. standards.
- D. Provide 4" x 4" x 3/4" nominal thick vibration isolation pads, four per transformer. Pads shall be Korfund Co. or equal. Transformer is to be anchored in a manner that minimizes transmission of vibration.

5. TYPE "D" DISTRIBUTION TRANSFORMERS

A. The Contractor shall provide dry-type transformers as manufactured by Power Smith, Power Quality International, Square "D" or equivalent. KVA ratings shall be as indicated on the electrical plans, transformers shall have copper windings.

- B. Three phase transformers are to have 480 volt Delta primary and 120/208V/30/4W secondary. 30 KVA transformers and larger are to be supplied with 2-1/2% full capacity taps above and (4) 2-1/2% full capacity taps below primary voltage. Exceptions to the above will be shown on the electrical plans.
- C. Transformer coils shall be vacuum impregnated with non-hygroscopic, thermosetting varnish. Each layer shall have end fillers or tie downs to provide maximum mechanical strength. Insulation systems and their construction techniques shall be listed by Underwriters Laboratories.
- D. Transformer coils shall have a final wrap of electrical insulating material designed to prevent injury to the coil wire. Transformers having coils with magnet wire visible will not be acceptable.
- E. All cores to be manufactured from high grade, non-aging, silicon steel with high magnetic permeabilities, low hysteresis and eddy current losses. Magnetic flux densities are to be designed below saturation as required to allow for a minimum of 10% over voltage excitation. The cores shall be clamped with structural angles (formed angles not acceptable) and bolted to the enclosure to prevent damage during shipment or rough handling.
- F. The core and coil unit shall be completely isolated from the enclosure by means of a vibration isolating system and shall be so designed as to provide for continual securement of the core and coil unit to the enclosure. Sound isolating systems requiring the removal of all tie down facilities will not be acceptable.
- G. Primary winding configuration must be 'Delta'.
- H. Secondary winding configuration must provide a zero-sequence reactance of <0.2% at 60Hz at any primary to secondary phase shift.
- I. Secondary winding configuration must provide a zero-sequence impedance of<0.9% at 60Hz at any primary to secondary phase shift.
- J. Transformers 15 KVA thru 45 KVA shall be provided with interchangeable mounting for floor or wall.
- K. The maximum top of case temperature shall not exceed 35°C above ambient.
- L. The entire transformer enclosure shall be degreased, cleaned, phosphatized, primed and finished with baked enamel.
- M. The core and coils shall be visibly grounded to the frame of the transformer cubicle by means of a flexible grounding strap of adequate size.
- N. Sound levels shall "low noise" and be guaranteed by the manufacturer and substantiated by certified tests on each unit furnished. The sound levels are not to exceed the following values: 10 to 50 KVA: 42dB, 51 to 150 KVA: 47dB, 151 to 300 KVA; 52dB.
- O. If a particular "K" rating is specified for a dry-type transformer, that rating shall be provided.

- P. Insulation Class: R (220°C) and shall have the ability to carry a continuous 15% overload without exceeding a 220°C rise above 40° ambient.
- Q. Magnetic field at 1.5 feet: max. 0.1 Gauss
- R. Transformer shall provide an ultra-low zero-sequence impedance path in its secondary three-phase, four-wire subsystem for all zero-sequence currents, including 3rd, 9th, 15th, 21st harmonics,
- S. Transformer shall provide a primary-secondary phase-shift of 0 degree in order to achieve cancellation of 5th, 7th, 11th, 13th, 17th, 19th, 23rd, 25th, --- positive- and negative-sequence harmonic currents on the units' primary bus, equal to the lesser source of each individual harmonic current through each model, thereby treating all of the foregoing harmonic currents.
- T. NEMA TP1 linear-load efficiency at 35% full load must be verified by NEMA TP2 test method. In addition, non-linear efficiency at 35% full load must be verified by Voltage & Current Difference Measurement Method.
- U. Anti-vibration pads shall be used between the core and the enclosure.
- V. e-Rated® Efficiency: US DOE-CSL3 efficiency requirements.
- · W. TVSS (parallel) 160,000 Amps per Phase (L-N, L-L, N-G all at 80,000 Amps each)
- X. Linear Load Efficiency: The transformer shall meet the efficiency requirements of NEMA TP1-2002, EPA Energy Star® and CSA C802.2-00, which are linear load efficiency requirements. Proof of compliance Type Tests, for each transformer type and rating, must be based on NEMA TP2-1998 'Standard Test Method for Measuring the Energy Consumption of Distribution Transformers'. Type Test are required with each submission
- Y. Non-Linear Load Efficiency: The transformer shall meet the efficiency requirements of NEMA TP1-2002 under non-linear loading, which has 100% THDI and a harmonic profile that is based on IEEE Std. 519-1992, Table 4.3 'Spectrum of Typical Switch Mode Power Supplies'. Proof of compliance Type Tests, for each transformer type and rating, must be based on the Voltage and Current Difference Measurement Method, with a minimum accuracy of 0.033%. Type Tests are required with each submission. The Power In Power Out Measurements Method is not acceptable.
- Z. Linear and non-linear losses and efficiencies, which are based on the Sections Y and Z, between 25% full load and 100% full load, must be plotted for each type and kVA rating.

REQUIREMENTS & CERTIFICATIONS

- A. Evidence of significant relevant application experience.
- B. Quantitative performance data including before/after effect on voltage distortion at load panels that demonstrates the capability to achieve the harmonic mitigation called for in this specification.
- C. Manufacturer shall be ISO 9001 certified.

D. Device shall be UL Listed, CSA certified and CE Listed.

7. WARRANTY

- A. Manufacturer shall guarantee that the product will perform as described in Section 2.2 of this specification.
- B. Manufacturer shall warrant the product against defective materials and workmanship.
- C. Minimum terms and conditions: 10 year pro-rated, with standard limited liability clauses.

SECTION 262726 WIRING DEVICES AND PLATES

1. GENERAL

- A. This section of the specifications includes wiring devices, cover plates, weatherproof and dust-tight closures, communications devices and floor outlets.
- B. Wiring devices are listed by manufacturer and catalog numbers to establish the quality and type required. Equivalent devices of other manufacturers will be acceptable with prior approval of the Engineer. Submit cutsheets and/or samples of each type ten days prior to bid date for review and written approval to bid. Insofar as possible, standard application or special application devices shall be by one manufacturer.

2. MATERIALS

TYPE	RATING	CONFIGURATION	COLOR	VENDOR - CAT.#
RECEPTACLE - DUPLEX COMMERCIAL GRADE	125V, 20A	NEMA 5-20R	!	HUBBELL GE LEVITON
	* USE WHEN ON DEDICATED 20A CKT., OR CALLED OUT ** USE WHEN ON DEDICATED 15A CKT., OR WHEN MORE THAN ONE RECEPTACLE ON A CIRCUIT			
RECEPTACLE - DUPLEX	125V, 20A	NEMA 5-20R	!	HUBBELL LEVITON GE
PREMIUM GRADE	125V, 15A	NEMA 5-15R	1	
	* USE WHERE ON DEDICATED 20A CKT., OR CALLED OUT ** USE WHERE ON DEDICATED 15A CKT., OR WHERE MORE THAN ONE RECEPTACLE ON A CIRCUIT			
RECEPTACLE - DUPLEX G.F.I. (SHALL MEET U.L. 943 STANDARD)	125V, 20A	NEMA 5-20R	1	HUBBELL GE LEVITON
RECEPTACLE - SIMPLEX	125V, 20A	NEMA 5-20R	!	HUBBELL GE LEVITON
RECEPTACLE - DUPLEX, SAFETY TYPE (WITH TAMPER-	125V, 20A	NEMA 5-20R	!	HUBBELL GE LEVITON

RESISTANT SCREWS)				
RECEPTACLE - DUPLEX, SAFETY TYPE (WITH TAMPER- RESISTANT SCREWS)	125V, 15A	NEMA 5-15R	!	HUBBELL GE LEVITON
RECEPTACLE, DUPLEX NEON PILOT FACE-RED	125V, 15A	NEMA 5-15R	!	HUBBELL GE LEVITON
RECEPTACLE, SIMPLEX WITH CLOCK HANGER TAB, STAINLESS STEEL PLATE	125V, 15A	NEMA 5-15R	METAL	HUBBELL GE LEVITON
RECEPTACLE, DUPLEX ISOLATED GROUND WITH SURGE SUPPRESSION, INCLUDING INDICATOR LIGHT	125V, 15A	NEMA 5-15R	BLUE DEVICE	HUBBELL GE LEVITON
RECEPTACLE, SINGLE	250V, 20A	NEMA 10-20R	BLACK	HUBBELL GE LEVITON
RECEPTACLE, SINGLE	250V, 30A	NEMA 6-30R	BLACK	HUBBELL GE LEVITON
RECEPTACLE, SINGLE	250V, 50A	NEMA 6-50R	BLACK	HUBBELL GE LEVITON
SWITCH, SINGLE POLE	120/277V, 20A	SPST	!	HUBBELL GE LEVITON
SWITCH, SINGLE POLE - RED TOGGLE (WITH RED COVER PLATE, FOR EMERGENCY LIGHTING CONTROL)	120/277V, 20A	SPST	RED	HUBBELL GE LEVITON
SWITCH, THREE-WAY	120/277V,	3-WAY	!	HUBBELL

	20A			GE LEVITON
SWITCH, FOUR-WAY	120/277V, 20A	4-WAY	!	HUBBELL GE LEVITON
SWITCH, KEYED	120/277V, 20A	SPST	N/A	HUBBELL GE LEVITON
SWITCH, KEYED	120/277V, 20A	3-WAY	N/A	HUBBELL GE LEVITON
SWITCH, KEYED	120/277V, 20A	4-WAY	N/A	HUBBELL GE LEVITON
NOTE:				
SWITCH, KEYED TO <u>EACH</u> BE FURNISHED WITH ONE HUBBELL #1209 KEY. TURN OVER TO OWNER AT CLOSE OF PROJECT AND OBTAIN RECEIPT FOR VERIFICATION THAT KEYS HAVE BEEN DELIVERED.				
SWITCH, MOMENTARY, 3- POSITION, CENTER OFF SWITCH, PILOT (TOGGLE LIT IN OFF POSITION)	120/277V, 20A (VERIFY VOLTAGE USED)	SPDT	!	HUBBELL GE LEVITON
SWITCH, PILOT (TOGGLE LIT IN OFF POSITION)	120/277V, 20A (VERIFY VOLTAGE USED)	SPDT OR AS NOTED	CLEAR "LEXAN"	HUBBELL GE LEVITON
SWITCH, PILOT (TOGGLE LIT IN ON POSITION)	120/277V, 20A (VERIFY VOLTAGE USED)	SPST OR AS NOTED	CLEAR "LEXAN"	HUBBELL GE LEVITON
TIMER SWITCH	120V	SPST, 15 MINUTE	!	HUBBELL GE LEVITON

NOTES:

- 1. PROVIDE MATCHING CAP (PLUG) FOR ALL RECEPTACLES 30 AMP RATED AND ABOVE AS REQUIRED FOR EQUIPMENT.
- 2. ALL RECEPTACLES SHALL BE BACK OR SIDE-WIRED, CLAMPING TYPE
- FOR DRYERS AND RANGES, PROVIDE 3-POLE GROUNDING TYPE AS REQUIRED BY DEVICE. LOCATE DEVICE SO THAT DRYER OR RANGE CAN BE PUSHED TIGHTLY AGAINST WALL.
- 4. RECEPTACLES SHALL BE TAMPER RESISTANT AND WEATHER RESISTANT AND MARKED ACCORDINGLY AS REQUIRED BY N.E.C.
- 5. ALL RECEPTACLES INSTALLED IN DAMP OR WET LOCATIONS SHALL BE UL LISTED WEATHER RESISTANT TYPE.
- ! SEE ARTICLE 3, COLOR.

A. Small Motor Control Switches:

(1) For small line-to-neutral motor loads of 3/4 HP or less, single phase, rated at 120 or 277 volts, provide snap-type, H.P. rated motor starter switch with thermal overloads. Overload heaters sized to match the motor nameplate amperes and the ambient temperature shall be provided. Provide with NEMA 1, NEMA 3R or other enclosure suitable for the location and atmosphere. All manual starters in finished areas shall be in flush-mounted enclosures.

3. COLOR

- A. Color of devices shall be as selected by the architect. Samples (devices, plates or both) may be required to be submitted with other architectural color items by the Contractor. The Contractor shall coordinate any such submission required with other trades, the Prime Contractor or as needed.
- B. Where devices are controlling or supplying emergency power from a standby source, the device color shall be red, as with switch toggles or receptacle fronts. Plate color shall match others on normal power in the building unless otherwise noted.
- C. Where surface finishes next to the devices vary in color or shade throughout the project, the Contractor may be required to provide lighter or darker plates and devices to more closely match wall finishes. These variations are considered to be included in the original contract for construction.

4. MANUAL DIMMERS

- A. Manual dimmers for incandescent, MR-lamp incandescent or fluorescent loads shall be matched to the type load intended to be controlled.
- B. Power rating shall be verified by examining the plans and suitable for the load, but in no case less than circuit load. Furnish dimmers in nominal power ranges of 600W, 1000W, 1500 watts, etc.

- C. Manual dimmers shall be provided with all solid state components, complete with choke coil and/or other R.F.I. suppression devices.
- D. Manual dimmers shall be suitable for mounting in single gang outlet box, ganging together in multisection boxes where indicated, without derating being necessary.
- E. Manual dimmers shall be of the sliding-type, with detent stop at off position, full range control 0-100%. Lutron Company "Nova" Series or equivalent Lithonia, Lightolier.
- F. Manual dimmers for fluorescent lighting or low voltage transformer-fed incandescent fixtures shall be matched to suit the characteristics of the particular manufacturer's electronic ballast or transformer used in the dimming type fixture. Submit shop drawings of dimmer in the same submittal as the lighting fixtures.

5. PLATES AND COVERS

- A. Unless otherwise specified or noted, all wiring device plates and covers shall be stainless steel, Hubbell or equivalent G.E. or Leviton. Color shall match device unless otherwise indicated.
- B. All kitchen, gymnasium or food service area plates shall be bright finish 302 stainless steel.
- C. Cover plates shall be of one manufacturer insofar as possible.
- D. Weatherproof plates for G.F.C.I. receptacles shall be cast aluminum, self-closing, gasketed, suitable for standard box mounting, U.L. listed for wet location use, cover closed. Vertical mounting Hubbell WP26M, horizontal mounting Hubbell WP26MH (die-cast zinc) or equivalent Leviton or G.E.
- E. Weatherproof switch plates for toggle-handle switches shall be clear silicone rubber, for standard outlet boxes. Hubbell 1795 or equivalent G.E. or Leviton.
- F. Cover plates for computer, telephone or other system outlets shall be as required to meet supplier or the owner's requirements, as applicable. Color to match other plates on project. Furnish telephone plates with wall-mounting studs if mounted at 48" or higher. See devices schedule below.

6. INSTALLATION

- A. All wiring devices in dusty areas, exposed to weather and moisture shall be installed in Type "FS" or similar conduit fittings having mounting hubs, with appropriate cover plates.
- B. Devices that have been installed before painting shall be masked. No plates or covers shall be installed until all finishing and cleaning has been completed.
- C. Provide G.F.C.I. duplex feed-thru style receptacles in accordance with new U.L. Standard 943 where indicated or required by the National Electrical Code, whether specifically called out or not. When a G.F.C.I. receptacle is on a circuit with other non-G.F.C.I. receptacles, it shall always be placed at the homerun point of the circuit and shall be wired to ground-fault interrupt protect the downstream outlets on that circuit unless specifically indicated to the contrary. Provide a "G.F.C.I. protected" label on each downstream outlet.

- D. GFCI devices shall be installed in a "readily accessible" location per NEC requirements. GFCI protected outlets required by plans or code shall be fed by a GFCI breaker or upstream GFCI device if they are not readily accessible.
- E. Where surge suppression outlets are provided, they shall be ANSI Category "A" style. They shall be installed as dedicated-circuit outlets or where indicated with multiple outlets on a circuit, they shall be placed at the homerun point of that circuit and feed-thru wired to protect the downstream outlets on that circuit.
- F. All receptacles shall be installed with ground prong at top position.
- G. All outlets not provided with wiring devices shall be closed with a blank plate matching other plates in the area.

SECTION 264313 SURGE SUPPRESSION SYSTEMS

1. GENERAL

- A. Each Contractor's attention is directed to Section 260501, General Provisions Electrical and all other contract documents as they may apply to his work.
- B. Each Surge Suppression Unit (transient voltage surge suppressor, or T.V.S.S.) furnished shall meet or exceed U.L. 1449, Second Edition *Revision* (February 2007), with capacity for each basic Category A, B and C, surge rise time of ten microseconds and a surge duration of at least one thousand microseconds.
- C. <u>SPECIAL NOTE</u>: When using a "Meggar" or similar instrument to test conductors in a panelboard or switchboard, disconnect any T.V.S.S. device connected to any combination of those conductors. Failure to do so may damage or destroy the T.V.S.S. device. If any damage occurs as a result of testing to a T.V.S.S. device, the Contractor shall replace the device.

2. SCOPE OF THE WORK

- A. The Contractor shall provide the necessary labor, materials, wiring and services necessary to provide the complete electrical surge protection systems as specified herein. This work shall include, but is not necessarily limited to:
 - (1) Provision of Surge Suppression Units at certain points in the power distribution network, on telephone, satellite dish leads and cable television service lines as indicated herein or on the drawings.
 - (2) Proper installation of surge suppression unit(s), in accord with shop drawings. Wiring routing, grounding, raceways and all connections shall be in <u>exact accord</u> with manufacturer's recommendations, the National Electrical Code, and any other applicable regulations, local or national, or international.

3. QUALITY ASSURANCE

- A. The manufacturer shall be regularly engaged in production of surge protection equipment, of types, sizes and ratings required, whose products have been satisfactorily used in similar service for not less than three years.
- B. Comply with NEC and NFPA requirements, as applicable to materials and installation of surge protection components and wiring. Surge protection equipment shall be UL listed and labeled for its intended use. TVSS shall be labeled with 200kA Short Circuit Current Rating (SCCR). Where applicable, equipment shall comply with ANSI standards for such equipment.
- C. <u>SPECIAL NOTE</u>: The physical routing, length and connections of the unit's phase, neutral and ground conductors are critical to the performance of surge suppression units. The Contractor shall carefully observe and comply with the manufacturer's installation requirements.

4. SUBMITTALS

- A. Product Data: Submit manufacturer's data on surge protection systems and components as part of shop drawing submissions. Indicate all capacity ratings, clamp times, maximum capacities, EMI/RFI attenuation data, withstand capabilities, physical construction and listing agency approvals.
- B. Maintenance Data: Submit maintenance instructions for surge suppression system. Include this data in Operation and Maintenance manuals.

MATERIALS

A. ACCEPTABLE MANUFACTURERS

Subject to compliance with requirements, manufacturers offering surge protection components which may be incorporated in the work includes, but are not limited to, the ones listed below. Other manufacturers will be considered if their proposed products are in full compliance with these specification requirements.

Surge Protective Devices:

Liebert Corporation, Inc General Electric Corporation Transtector, Inc. Advanced Protection Technologies, Inc. Square D. Inc.

6. T.V.S.S. MINIMUM REQUIREMENTS

T.V.S.S. minimum requirements shall meet or exceed the following criteria:

A. Minimum surge current capability (single pulse rated) per phase shall be:

(1) Service entrance applications: 2

200 kA per phase (Category "C")

(2) Distribution applications:

120 kA per phase (Category "B")

(3) Non-receptacle applications:

40 kA per phase (Category "A")

(4) Receptacle applications:

12 kA per phase (Category "A")

B. UL 1449 Listed Suppression Voltage Ratings for service entrance shall not exceed the following: (Category "C")

<u>VOLTAGE</u>	<u>L-N</u>	<u>L-G</u>	<u>N-G</u>	MCOV
208Y/120V	400	400	400	150V
240Delta/120V	400	400	400	150V
480Y/277V	800	800	800	320V

(With internal disconnect switch 400V and 800V respectively).

C. UL 1149 Listed Suppression Voltage Ratings for distribution shall not exceed the following: (Category "A" & "B")

VOLTAGE	L-N	L-G	N-G	MCOV
208Y/120V	400	400	400	150V

240Delta/120V 400 400 400 150V 480Y/277V 800 800 800 320V

(With internal disconnect switch 400V and 800V respectively)

(L-N = Line to neutral)(L-G = Line to ground)(N-G = Neutral to ground)(MCOV = Maximum continuous operating voltage)

7. BUILDING ELECTRICAL SERVICE SURGE PROTECTION SYSTEM COMPONENTS

A. GENERAL

- (1) Provide UL 1449 Second Edition *Revision* (February 2007) listed and labeled lightning and transient surge protection devices, installed where shown on the drawings and in accord with the manufacturer's recommendations.
- (2) The surge protection devices shall be shunt type and polyphase, with the ability to conduct high energy transients from line to ground, line to neutral and neutral to ground. Provide in a NEMA 12 enclosure with hinged or screw cover front panel. Provide internal fusing in modules to protect unit.
- (3) Provide units with EMI/RFI noise attenuation, using 50 ohm insertion loss test: -50 dB at 100 khz, UL 1283 listed, with an insertion ratio of 50:1 using M.I.L. STD 220-A.
- (4) For each surge suppression unit, categories A, B & C, provide unit function status indicators. These indicators shall be mounted in the face of the equipment panel. Provide green L.E.D., illuminated for normal operation, red L.E.D. for trouble/fault or reduction of surge suppression capacity. Provide an audible alarm with silence switch to alarm at unit on malfunction for category "C" units only. Provide a resettable surge counter for each category "C" unit to indicate each suppression operation of the unit.
- (5) Enclosures shall be surface-mounted where panels protected are surface-mounted, flush-mounted for all units in finished areas. Where panels protected are flush-mounted, place surge suppression device above or below panel, aligned and square with panel trim.
- (6) Provide disconnecting means for each surge protection device per the following:

Category "C" Device at Main Service:

40 to 60 Ampere, 3 Pole, 600V, S/N, NEMA 1 disconnect, built into the unit and furnished by the supplier as an integral part of the equipment. Disconnecting means shall be capable of withstanding the available fault currents. Verify fault current with the Contractor.

Category "B" Devices, at Panels: 30 Ampere, 3 Pole Circuit Breaker in Protected Panel

Category "A" Devices, at Panels:
30 Ampere. 3 Pole Circuit Breaker in Protected Panel

(7) Internal Device Overcurrent Protection (Fusing)

a. All protection modes (including Neutral to Ground) of each surge suppression device shall be internally fused at the component level with fuse I²t capability allowing the suppressor's maximum rated transient current to pass through the suppressor without fuse operation. Every suppression component of every mode (including Neutral to Ground) shall also be protected by thermal overtemperature controls. If the rated I²t characteristic of the fusing is exceeded, the fusing shall be capable of opening in less than one millisecond and clear both high and low impedance fault conditions. The fusing shall be capable of interrupting up to 200 KA symmetrical fault current with 600 VAC applied. This overcurrent protection circuit shall be monitored, to provide indication of suppression failure. Conductor level fuses or circuit breakers internal or external to the surge suppression units are not acceptable as meeting this requirement.

B. MAIN SERVICE SURGE SUPPRESSION - CATEGORY "C" UNITS

- (1) Category "C" units shall be installed as indicated on the contract documents. Units shall be rated 277 volts/480 volts (or 120/208 volts as needed), 3 phase, 4 wire, minimum 200,000 amp (total amps per phase) surge capacity, with less than 5 nanosecond reaction time. Category "C" units installed to protect a switchboard may be built into the switchboard construction if U.L listed for such applications.
- (2) Category "C" withstand capabilities: 5,000 A.N.S.I. Category C3 surges with less than 10% change in clamping voltage.

C. PANELBOARD SURGE SUPPRESSION - CATEGORY "B" UNITS

- (1) Units shall be installed as indicated on the contract documents, set beside or above the distribution panel indicated, and connected as recommended by the equipment manufacturer.
- (2) Category "B" units shall be rated for 277-480 volts (or 120/208 volts, as indicated), 3-4 Wire Wye service. Units shall be minimum 120,000 ampere rated per phase, with less than 5 nanosecond reaction time. Provide fusing and fault indicator pilot lights as in (A) General above.
- (3) Category "B" withstand capabilities: 5,000 A.N.S.I. Category C3 surges with less than 10% change in clamping voltage.

D. BRANCH PANELBOARD SURGE SUPPRESSION - CATEGORY "A" UNITS (NON-RECEPTACLE APPLICATIONS)

- (1) Units shall be installed flush in finished areas. Units may be surface-mounted if in unfinished mechanical spaces and the panel protected is also surface-mounted. Locate as indicated on the contract documents and connect in exact accord with the manufacturer's recommendations. They shall be rated 40,000 amperes surge current, less than one nanosecond response time.
- (2) Category "A" units shall be rated for 277/480 volts or 120/208 volts, three phase, 4 wire wye service as indicated on the drawings. Units shall be fused in accord with (A) General noted above.

(3) Furnish unit with red and green indicator lights to signify normal operation and component or suppression capability failure.

E. TELEPHONE AND TELEVISION SURGE SUPPRESSION

- (1) As a part of this section of work, the Contractor shall provide or arrange for the installation of U.L. listed lightning and surge arrestors on the incoming telephone and television service lines, as well as on AM-FM- antenna downleads and the coaxial cables coming into the building from satellite dish antennas and all other types of exterior antennas installed by the Contractor or Owner, where the Contractor installs the coaxial cable for the antenna.
- (2) Arrestors shall be U.L. listed, properly grounded per N.E.C., and shall be located at the service entrance points for each cable installed by a utility company or at the point of building entry for Contractor-installed cables leading in from antennas. Also provide surge arrestors of the proper type for any copper cables that are installed between buildings by the Contractor, if such a condition occurs within the project.
- (3) The Contractor shall arrange for the telephone company to install M-O-V, gas-type or other U.L. listed lightning arrestors on each of their incoming telephone circuits that are terminated for building use.
- (4) Arrestors for coaxial lines shall be rated 25 to 250 MHZ on cable T.V. lines, and 250 MHZ to 1GHZ on satellite dish lead-ins with BNC jacks in/out or as required by antenna connectors.
- (5) Devices as manufactured by Lucent Technologies, Winegard or Liebert Corporation will be acceptable.
- (6) Provide a ground lug for individual surge suppression unit installations, with the recommended ground wire size routed back to the building main electrical ground or ground bar in wiring closet.
- (7) Where multiple surge suppression units are installed, as at service entrance locations, provide a ground bar, copper, with multiple tapped holes and a properly sized ground lead routed back to the building main electrical ground.

8. EXECUTION

A. Installation of Surge Protection Systems:

- (1) Install surge protection systems as indicated and in accordance with equipment manufacturer's written instructions, in compliance with applicable requirements of NFPA, local prevailing codes and with UL lightning and power surge protection standards to ensure that surge suppression systems comply with requirements.
- (2) Coordinate with other work, including electrical wiring work as necessary to interface installation of units.
- (3) Install conductors with direct, shortest possible phase, neutral and ground paths from all in/out connections, avoiding sharp bends and narrow loops.

- (4) Install surge suppression units as close as practical to equipment they are protecting. Install appropriate units at main electrical service entrance equipment and secondary branch panelboards as indicated.
- (5) Refer to the drawings for installation of individual surge suppression devices to protect branch circuits. Also see Section 262726 for (receptacle type) device requirements. All receptacle type surge suppression units shall be wired as feed-thru type, to protect all downstream outlets on that branch circuit unless otherwise indicated.

9. WARRANTIES

- A. All surge suppression equipment shall be unconditionally warrantied by the Contractor for a period of one year from the date of project substantial completion. Where longer manufacturer's warranties are offered, they shall be made available to the Owner. Note these extended warranties in the Operations and Maintenance Manuals.
- B. Category "C" devices to carry 5 year parts and on site labor unconditional warranty.
- C. Category "B" and "A" devices to carry 5 year unconditional replacement warranty.

SECTION 265113 LIGHTING FIXTURES AND LIGHTING EQUIPMENT

1. GENERAL

- A. Furnish and install all lighting fixtures, as herein specified, complete with accessories for safe and effective operation. All fixtures shall be installed and left in an operable condition with no broken, damaged or soiled parts.
- B. All items furnished shall comply with the latest standards applicable such as U.L., NEMA, etc., and shall bear labels accordingly. All fixtures shall be the color specified or as selected by the Architect. Wherever fixtures have evident damage, they shall be restored to new condition or shall be replaced. Likewise, fixtures showing dirt, dust or fingerprints shall be restored to new condition or shall be replaced.
- C. Eight copies of light fixture factory shop drawings and cuts, showing fixture dimensions, photometric data, installation data and, if applicable, air handling data, shall be submitted to the Engineer for written approval 30 days after bid date. (Verify shop drawing quantities with the Architect.)
- D. Locate pendant, surface mounted or chain-hung industrial fixtures in mechanical rooms and similar spaces to avoid ductwork and piping. Locate around and between equipment to maximize the available light. Request a layout from the Engineer if uncertain about an installation.
- E. Alternate fixtures may be substituted for types specified by name or catalog number. Proposed substitutions must be submitted to the Engineer ten working days prior to bid date for written approval to bid. This written approval will only be issued in addendum form.
- F. Where emergency battery packs are provided with fixtures, they shall be connected to an unswitched power line and wired in accord with the manufacturer's recommendations.
- G. All reflecting surfaces, glass or plastic lenses, downlighting Alzak cones and specular reflectors shall be handled with care during installation to avoid fingerprints or dirt deposits. It is preferred that louvers be shipped and installed with clear plastic bags to protect louvers. At close of project, and after construction air filters are changed, remove bags. Any louver or cone showing dirt or fingerprints shall be cleaned with solvent recommended by the manufacturer to a like-new condition, or replaced as necessary in order to turn over to the Owner new fixtures at beneficial occupancy.
- H. Refer to architectural details as applicable for recessed soffit fixtures or wherever fixture installations depend upon work of other trades. Coordinate all installations with other trades. Verify dimensions of spaces for fixtures, and if necessary, adjust lengths to assure proper fit and illumination of diffuser and/or area below.
- I. Warranty shall start at Final Project Completion.

2. VOLTAGE

A. All lighting fixtures will be rated 120, 277 or 480 volts, single phase as indicated or required.

3. LED FIXTURES

LED SOURCES

- A. LED's shall be manufactured by a manufacturer who has produced commercial LEDs for a minimum of five (5) years.
- B. Lumen Output minimum initial delivered lumen output of the luminaire shall be as follows for the lumens exiting the luminaire in the 0-360 degree zone as measured by IESNA Standard LM-79-08 in an accredited lab. Exact tested lumen output shall be clearly noted on the shop drawings.
- C. Lumen output shall not decrease by more than 20% over the minimum operational life of 50,000 hours at the rated ambient operating temperature.
- D. Individual LEDs shall be connected such that a catastrophic loss or the failure of one LED will not result in the loss of the entire luminaire.
- E. LED Boards shall be suitable for field maintenance and have with plug-in connectors. LED boards shall be upgradable
- F. Light Color/Quality:
 - a) Correlated Color temperature (CCT) range as per specification, between 3000K, 3500K and 4000K shall be correlated to chromaticity as defined by the absolute (X,Y) coordinates on the 2-D CIE chromaticity chart.
 - b) Color shift over 6,000 hours shall be <0.007 change in u' v' as demonstrated in IES LM80 report.
 - c) The color rendition index (CRI) shall be 80 or greater
 - d) LED boards to be tested for color consistency and shall be within a space of 2.5 MacAdam ellipses on the CIE chromaticity chart.

LED DRIVERS

- A. Driver: Acceptable manufacturer: eldoLED, Sylvania, or Philips that meet or exceed the criteria herein.
- B. Ten-year expected life while operating at maximum case temperature and 90 percent non-condensing relative humidity.
- C. Driver should be UL Recognized under the component program and shall be modular for simple field replacement.
- D. Electrical characteristics: 120 277 volt, UL Listed, CSA Certified, Sound Rated A+. Driver shall be > 80% efficient at full load across all input voltages. Input wires shall be 18AWG solid copper minimum.
- E. Dimming: Driver shall be suitable for full-range dimming. The luminaire shall be capable of continuous dimming without perceivable flicker over a range of 100 percent to <u>0.1</u> percent of rated lumen output with a smooth shut off function.
- F. Dimming shall be controlled by a 0-10V signal, or if require "DMX".
- G. Driver shall include ability to provide no light output when the control signal drops below 0.5 V, and shall consume 0.5 watts or less in this standby.
- H. Driver shall be capable of configuring a linear or logarithmic dimming curve.
- I. Drivers shall track evenly across multiple fixtures at all light levels, and shall have an input signal to output light level that allows smooth adjustment over the entire dimming range regardless of the controller type
- J. Flicker: Driver and luminaire electronics shall deliver illumination that is free from objectionable flicker as measured by flicker index (ANSI/IES RP-16-10). At all points

within the dimming range from 100-0.1 percent luminaire shall have: Less than 1 percent flicker index at frequencies below 120 Hz and less than 12 percent flicker index at 120 Hz, and shall not increase at greater than 0.1 percent per Hz to a maximum of 80 percent flicker index at 800Hz

K. Driver disconnect shall be provided where required to comply with codes.

LED ELECTRICAL

- A. THD: Total harmonic distortion (current and voltage) induced into an AC power line by a luminaire <u>shall not exceed 20 percent</u> at any standard input voltage and meet ANSI C82.11 maximum allowable THD requirements.
- B. Surge Suppression: The luminaire shall include surge protection to withstand high repetition noise and other interference. Withstand up to a 1,000 volt surge without impairment of performance as defined by ANSI C62.41 Category A. To reduce false circuit breaker tripping due to turn on inrush, the following statement ensures that electronic dimming driver will meet NEMA inrush recommendations.
- C. Rush Current: <u>Meet or exceed NEMA 410 driver inrush standard</u> of 430 Amps per 10 Amps load with a maximum of 370 Amps2 seconds.
- D. RF Interference: The luminaire and associated on-board circuitry must meet Class A emission limits referred in Federal Communications Commission (FCC) Title 47, Subpart B, Section 15 Non-Consumer requirements for EMI/RFI emissions
- E. Driver must support automatic adaptation, allowing for future luminaire upgrades and enhancements and deliver improved performance.
- F. Power Factor: The luminaire shall have a power factor of 90% or greater at all standard operating voltages and full luminaire output.

4. LAMPS

A. All incandescent lamps shall be rated 130 volts with a medium screw type base (or as required) in wattages less than 300 watts and 130 volts, mogul screw type base in 300 watts and larger.

5. LIGHT FIXTURE GENERAL REQUIREMENTS

- A. LED Recessed Lighting Fixtures General Requirements
 - (1) The following are minimum requirements for recessed LED fixtures for lay-in grid, gypsum board, plaster and concealed spline ceilings. Surface-mounted LED fixture requirements shall be similar.
 - (2) Housings shall be a minimum of 4" depth, premium grade, constructed of a minimum 22 gauge die embossed or stiffened cold rolled pre-treated rust-resistant steel. Troffers shall be equivalent to Hubbell "Versaline," Daybrite "Designer," Lightolier equivalent or Lithonia "2SPG" series.
 - (3) All parts shall be finished with polyester powder or white baked enamel (85% minimum reflectance) painted after fabrication. All wiring shall be type TFN, or THWN and shall be covered by the steel driver cover or wiring channel. Exposed wiring is not acceptable. Connection wiring shall be accessible thru a hinged access plate above driver channel in top of unit.

- (4) The complete light fixture unit shall be UL listed and labeled. Other agency listings may be acceptable with written approval from the Engineer.
- (5) Fixture lens doors shall be reversible, hinged, painted after fabrication, with spring-loaded or other mechanically stable positive action latches.
- (6) Lens shall be as specified for each fixture type. If a specific manufacturer and series number of lens is listed, the substitute shall be of the exact specification (thickness, prism configurations, transparency, efficiency, photometric distribution, hardness, vandal-resistance, etc.). Minimum average thickness of any prismatic lens shall be .125".
- (7) Fixture trim and/or flanges shall conform with ceiling constructions as required. Verify all types prior to submission of shop drawings and indicate any special types on submittals. Fixtures installed in drywall or plaster ceilings to be provided with flange, screed and swing gate anchoring system.
- (8) All fixtures shall be furnished with hold down clips to meet applicable seismic codes, four clips per fixture minimum or the equivalent thereof in the installation trim. Verify thickness of drywall or plaster ceilings prior to submission of shop drawings, to allow for proper trim adjustment.
- (9) Support fixtures with one hanger wire at each end. Hanger wires shall be installed within 15° of plumb, maximum or additional support shall be provided. Wires shall be attached to the fixture body and to the building structure not to the supports of other work or equipment.
- (10) Each type of lay-in fixture shall be furnished with the proper housing flange or lip to suit the type of lay-in grid(s) being utilized on the project. The Contractor is to verify if narrow or standard grid members are being furnished and provide the proper type of light fixture trim. Indicate any special trims on shop drawing submittals.
- B. Industrial and Striplight LED Fixtures General Requirements
 - (1) Units shall have die-formed heavy gauge cold rolled steel channels and die-embossed reflectors.
 - (2) Finishes to be coated with a gloss powder paint or baked enamel finish with a minimum 85% reflectance.
 - (3) Units to have aligner clips where required for a continuous row appearance. Where continuous rows exceed twelve feet in length, provide a "unistrut" channel or similarly adequate mounting to stiffen and align row.
 - (4) Units to have captive latches for all covers and wire guards where specified. Wire guards shall be heavy-duty #14 wire gauge minimum with corrosion-resistant plated or vinyl finish.
 - (5) Units to be UL listed.
 - (6) Mounting brackets and hanging mechanisms shall be as specified in fixture descriptions, or as required. Allow a generous safety margin with all support systems, as recommended by the manufacturer.

- C. Recessed Ellipsoidal or Parabolic Cone Downlight General Requirements
 - Fixture to have an extruded or die-cast aluminum housing. Retaining mechanism shall provide easy access to LED array and driver box.
 - (2) Unit to have a corrosion-resistant steel junction box with hinged access covers and thermal protector.
 - (3) Mounting/plaster frame to be heavy gauge steel with finishing trim friction support springs, for the required ceiling thickness. Trim to be of color as selected by the Architect.
 - (4) Optical system to consist of a specular clear Alzak upper ellipsoidal (or parabolic, as noted) reflector with specular Alzak cone or microgroove matte black baffle as noted in schedule. Where other than clear Alzak cone/reflector color is noted on the schedule, it shall be furnished as specified.
 - (5) Provide telescoping channel bar hangers that adjust vertically and horizontally.
 - (6) Fixtures to be UL listed for thru-branch circuit wiring, recessed, and damp locations. Where installed in plaster or drywall or other inaccessible ceiling type, they shall be U.L. listed for bottom access.

D. Exit Lights - General Requirements

- (1) Housings and canopies shall be die-cast aluminum or corrosion resistant steel. Mountings shall be wall or ceiling, universal type, to suit the installation conditions.
- (2) Provide with stencil face, lettering color red, of sizes in accord with code, or as otherwise specified.
- (3) Provide single or double face as scheduled, indicated on plans or as required by the local authority having jurisdiction. Adjust installation position if required for clear visibility, in accord with applicable codes.
- (4) Complete unit to be finished in color as selected by the Architect. Provide directional arrows as indicated on plans, as scheduled to suit the means of egress or as required by the local authority having jurisdiction.
- (5) All exit signs shall be long life LED type.
- (6) Where emergency backup battery packs are provided with exit lights, they shall have capacities for continuous operation per applicable codes. They shall have reserve battery capacity to operate remote lamps where indicated.

6. LIGHTING FIXTURE SCHEDULE

A. Refer to the contract drawings for Lighting Fixture Schedule

7. PHOTOCELLS

- A. Provide 120, 277 or 480 volt (rated as needed), 1000 or 2000 watt photocells as needed for control of certain circuits or fixtures as indicated on plans. They shall be as manufactured by Tork, Paragon, AMF or approved equivalent.
- B. Mount photocells in locations concealed from sight lines standing on ground unless otherwise noted, in which case the final position shall be as directed by the Architect. Group together (if indicated at one location) and mount on back of parapet wall or otherwise properly support with mounting bracket. Coordinate with roofing installer to ensure that roof penetrations are properly made without violating or reducing the roof warranty in any way. Photocells may be mounted in other locations if it is not practical to install them on roofs or parapets, in which case the Contractor shall request direction for their mounting locations from the Engineer or Architect. Photocells shall always be mounted in a weatherproof, inconspicuous manner.

8. TIMECLOCKS

- A. Provide digital astronomic timeclock(s) to control the indicated loads. The number of poles, their ampacity and voltage withstand shall be to suit the load, but in no case less than 30 amps, 277 volts.
- B. Timeclock coil and motor power shall be 120 volts AC, backed up with seven day memory which is automatically replenished in normal operation. Provide a 120 volt control circuit from the nearest available panelboard.
- C. Order unit for the proper geographical latitude for the project site. Also provide day light savings time option and calibrate for April-October dates. Provide instruction to the Owner's representative in proper setting and operation of each type of timeclock provided.
- D. Enclosures for timeclocks shall be surface type, NEMA 1 or NEMA 3R as needed. Where exposed in finished areas, provide flush-style NEMA 1 enclosures.

9. LIGHTING MEANS AND METHODS

- A. THE FOLLOWING WIRING MEANS AND METHODS WILL BE APPROVED ON THIS PROJECT:
 - (1) A 23.75" LONG 23.75" WIDE 4.77" HIGH 20 GAUGE CRS WHITE POWDER COATED GRID MOUNTED ENCLOSURE WITH HTC CLIPS AND SUSPENSION ILETS ON EACH CORNER. THE ENCLOSURE IS TO HAVE A 20 GAUGE HINGED AND LATCHED DOOR WITH FACTORY PREWIRED OCCUPANCY SENSOR, PHOTOSENSOR AND/OR EMERGENCY BYPASS RELAY REFERRED TO IN NEC 700.2 AS AUTOMATIC LOAD CONTROL MOUNTED ON DOOR WITH LOW VOLTAGE CAT 5 CABLE INTERCONNECTING SENSOR TO CONTROL POWER DEVICES. EMERGENCY BYPASS RELAY IS TO BE PREWIRED THRU DRIVER CHANNEL TO EMERGENCY DRIVER. LIGHTING CONTROL DEVICES (POWER PACK, RELAY, BRIDGES, ETC.) ARE TO BE MOUNTED IN LOW VOLTAGE SECTION OF ENCLOSURE AND PREWIRED TO UP TO SIX (6) CAT 6 CONNECTORS IN TOP OF ENCLOSURE. THE CAT 6 CONNECTORS ARE TO ALL THE CONTROL DEVICES TO NETWORK THE LIGHTING CONTROL AND CONNECT REMOTE DEVICES TO CONTROL HARDWARE INSIDE OF ENCLOSURE (SWITCHES, SENSORS).

- (2) LINE VOLTAGE UP TO TWELVE (12) LIGHT EMITTING DIODE (LED) DRIVER ARE TO BE MOUNTED TO THE FOUR (4) SIDES OF THE ENCLOSURE AND FACTORY PREWIRED TO THE INCOMING NORMAL AND/OR EMERGENCY ELECTRICAL SERVICE 3/8" DIAMETER 72" LONG FLEXIBLE GALVANIZED STEEL CONDUIT WITH 3 NO. 18 THHN 600 VOLT INSULATED AND GROUND COPPER CONDUCTORS ENTERING INTO DRIVER AND 600 VOLT WIRING CHANNEL. THE DRIVER (AS SPECIFIED HEREIN) ARE SCREWED TO THE FOUR SIDES OF THE CHANNEL, LINE VOLTAGE WIRING AND LOW VOLTAGE LOAD SIDE WIRING IS PREWIRED AT THE FACTORY. LOW VOLTAGE ON THE LOAD SIDE OF THE DRIVER IS TO CONNECT TO A TWO WIRE PIN AND SLEEVE CONNECTOR IN TOP OF ENCLOSURE ABOVE EACH DRIVER. THE LINE VOLTAGE AND LOW VOLTAGE SECTION OF THE ENCLOSURE ARE TO BE SEPARATED BY FOUR (4) TABBED AND SCREWED 20 GAUGE CRS WHITE CHANNEL COVERS. ENCLOSURE WITH DRIVERS AND LIGHTING CONTROL DEVICES ARE TO BE UL LIST AS A UNIT. COMPONENT LISTING ONLY WILL NOT BE ACCEPTED.
- (3) LOW VOLTAGE UL LISTED LED LIGHTING FIXTURE ARE TO BE CONNECTED TO ENCLOSURE WITH 2 NO. 18 600 VOLT RATED CLASS II STRANDED PLENUM RATED CABLE THAT EXTENDS FROM TWO PIN AND SLEEVE FEMALE CONNECTOR IN TOP OF ENCLOSURE TO TWO PIN AND SLEEVE FEMALE CONNECTOR IN LED FIXTURE WITH TWO PIN MALE CONNECTOR IN EACH END OF CLASS II CONNECTOR CABLE. CABLE TO BE FACTORY MANUFACTURED AND FURNISHED WITH FIXTURES AS A COMPLETE UL LISTED ASSEMBLY.

ASSEMBLY EQUAL TO NINE 24 PTP SYSTEM

END OF SECTION

SECTION 270610 VOICE/DATA COMMUNICATIONS SYSTEM

PART 1 - GENERAL SPECIFICATIONS

1.1 RELATED DOCUMENTS

- A. The Contractor is directed to examine each and every section of these specifications, all drawings relating to the Contract Documents, any and all Addenda, etc., for work described elsewhere that may relate to the provision of the work described herein. Materials and performance requirements are specified elsewhere herein that relate to these systems.
- B. The use of proprietary or copyrighted names or reference to patented trade items within this specification or elsewhere in the Contract Documents is meant to establish a standard of quality and performance. In no way does such use establish a restrictive competitive bidding situation, or exclude materials or equipment that is truly equivalent to the standard of quality. All materials and equipment proposed for installation must meet or exceed all specified requirements and be approved. Known equals are listed, but will require cut sheets with performance parameters to be submitted for final approval at least 10 days prior to bid.

1.2 SUMMARY

A. Section Includes:

- (a) Work Area Outlets
- (b) 110 Copper Termination Block & Patch Panels
- (c) Racks, Cabinets and Cable Management
- (d) Horizontal Distribution Cable
- (e) Backbone & DAS Cabling Cable
- (f) Fiber Optic Termination Hardware
- (g) Fiber Jumpers
- (h) Pathways & Penetrations
- (i) Audio Visual Infrastructure
- (j) Power (UPS and PDU)
- (k) Grounding and Bonding
- (I) Copper Cable Protection Units
- (m) Firestopping
- (n) Cable System Identification System

1.3 SCOPE OF WORK

- A. The intent of this specification section is to cover the materials and installation of a structured cabling system and termination equipment as outlined herein and as detailed on the drawings. Work shall consist of
 - 1. Work area outlets including faceplates, jacks (voice, data, CATV, A/V), and labels. Boxes and conduit are being provided by Div 26 contractor.
 - 2. Voice and data copper station cabling from work area outlets to telecommunications rooms including termination testing and labeling.
 - 3. Voice and data work area equipment cords.
 - 4. Voice and data horizontal cross-connect jumpers and patch cables including labeling.

- B. System Description -- Voice and Data station cabling (copper) system shall consist of:
 - 1. Workstation outlet jacks.
 - 2. Voice and data station cabling as specified herein from each workstation outlet to the termination equipment located in the Main Distribution Frame (MDF) or the Intermediate Distribution Frame (IDF).
 - 3. Station Cable Termination Equipment in each MDF and IDF.
 - 4. Final connections of the station cabling at the workstation outlet jack and the termination equipment in each MDF and IDF.
 - 5. Cross connects / patch cable to connect work area outlets to backbone / network electronics.
 - 6. Testing and labeling.

1.4 REGULATORY REFERENCES:

- A. All work and materials shall conform in every detail to the rules and requirements of the National Fire Protection Association, the local Electrical Code and present manufacturing standards.
- B. All materials shall be UL or ETL Listed and shall be marked as such. If UL/ETL has no published standards for a particular item, then other national independent testing standards shall apply and such items shall bear those labels. Where UL/ETL has an applicable system listing and label, the entire system shall be so labeled.
- C. All modular jacks, patch cords, consolidation point, and patch cords performance shall be verified (not just tested) by a third party to be category 6A component and channel compliant.
- D. The cabling system described in this is derived from the recommendations made in recognized telecommunications industry standards. The following documents are incorporated by reference:
 - ANSI/TIA-568-C.0, Generic Communications Cabling for Customer Premises, February 2009
 - 2. ANSI/TIA-568-C.1, Commercial Building Communications Cabling Standard Part 1: General Requirements, February 2009
 - 3. ANSI/TIA-568-C.2, Balanced Twisted-Pair Communications Cabling and Components Standard, August 2009
 - 4. ANSI/TIA-568-C.3, Optical Fiber Cabling Components Standards, June 2008
 - 5. ANSI/TIA–569-A, Commercial Building Standard for Communications Pathways and Spaces, February, 1998
 - 6. ANSI/TIA-606-A, Administration Standard for Communications Infrastructure of Commercial Buildings, May, 2002
 - 7. ANSI/J-STD-607-A, Commercial Building Grounding and Bonding Requirements for Communications, October, 2002
 - 8. TIA-758-A, Customer-Owned Outside Plant Communications Cabling Standard, August 2004.
 - 9. TIA-758-A, Customer-Owned Outside Plant Telecommunications Cabling Standard, August 2004.
 - 10. ANSI/TIA-1179, Healthcare Facilities Telecommunications Infrastructure Standard
 - 11. BICSI TDMM, Building Industries Consulting Services International, Communications Distribution Methods Manual (TDMM) 12th Edition.
 - 12. National Fire Protection Agency (NFPA 70)
 - 13. FCC 47 CFR 68

- 14. NEMA 250
- 15. NEC 2014
- 16. ADA, Americans with Disabilities Act
- E. If this document and any of the documents listed above are in conflict, then the more stringent requirement shall apply. All documents listed are believed to be the most current releases of the documents. The Contractor has the responsibility to determine and adhere to the most recent release when developing the proposal for installation.
- F. This document does not replace any code, either partially or wholly. The contractor must be aware of local codes that may impact this project.

1.5 APPROVED VENDORS

- A. The Installation Vendors (Contractors) must at a minimum possess the following qualifications:
 - 1. Be in business a minimum of five (5) years
 - 2. Shall demonstrate satisfaction of sound financial condition and shall be adequately bonded and insured per owner's requirements.
 - 3. Possess those licenses/permits required to perform communications installations in the specified jurisdiction
 - 4. Personnel knowledgeable in local, state, province and national codes and regulations. All work shall comply with the latest revision of the codes and regulations. When conflict exists between local and national codes or regulations, the most stringent codes or regulations shall be followed.
 - 5. Must possess and provide proof of current owners insurance certificates
 - 6. Installers with RCDD on staff are preferred, at least one BICSI certified technician required.
 - 7. Must have prior experience with this type of installation or work activity. The customer may, with full cooperation of the contractor, visit client installations to observe equipment operations and consult with references. Specified visits and discussion shall be arranged through the contractors; however, the contractor's personnel shall not be present during discussions with references. The contractor must provide a minimum of three (3) references of similar jobs, one within the past 6 months and one at least 3 years ago where the same solution was installed.
 - 8. Documentation of ALL certifications to be provided in bid package
 - 9. Outside Plant Projects will be done by pre approved vendor according to demographic and size of project

1.6 WORK INCLUDED

A. The work included under this specification consists of furnishing all labor, equipment, materials, and supplies and performing all operations necessary to complete the installation of this structured cabling system in compliance with the specifications and drawings. The Telecommunications contractor will provide and install all of the required material to form a complete system whether specifically addressed in the technical specifications or not.

- B. The work shall include, but not be limited to the following:
 - 1. Furnish and install a complete telecommunications wiring infrastructure.
 - 2. Furnish, install, and terminate all UTP and Optical Fiber cable
 - 3. Furnish and install all wall plates, jacks, patch panels, and patch cords.
 - 4. Furnish and install all required cabinets and/or racks as required and as indicated.
 - 5. Furnish any other material required to form a complete system.
 - 6. Furnish and install j-hooks where needed for the horizontal distribution
 - 7. Furnish and install all materials to build out the MDFs/IDFs as depicted on drawings
 - 8. Telecommunications contractor is responsible for the basket tray in MDFs/IDFs. The basket tray for the horizontal distribution may be done by or in coordination with the electrical contractor
 - Perform link testing (100% of horizontal and/or backbone links/channels) and certification of all components.
 - Furnish test results of all cabling to the owner electronically, listed by each closet, then by workstation ID.
 - 11. Adhere and comply with all requirements of Manufacturer Certification.
 - 12. Provide owner training and documentation. (Testing documentation and As-built drawings)

1.7 SUBMITTALS

- A. Under the provisions of this request for proposal, prior to the start of work the telecommunications contractor shall:
 - Submit copies of the certification of the company and names of staff that will be performing the installation and termination of the installation to provide proof of compliance of this spec.
 - 2. Submit proof from manufacturer of contractor's good standing in manufacturer's program.
 - 3. No substitutions/alternatives from the manufacturers listed in this document will be permitted. No substituted materials shall be installed except by written approval.
 - 4. Product Data: For each type of product indicated.
 - a. Submittals shall include manufacturer's data sheets (cut sheets) and be accompanied by a detailed bill of material, including part numbers and quantities.
 - 5. Shop Drawings:
 - a. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - b. Wiring diagrams to show typical wiring schematics including the following:
 - 1) Cross-connects.
 - 2) Patch panels.
 - 3) Patch cords.
 - c. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
 - d. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - 1) Vertical and horizontal offsets and transitions.
 - Clearances for access above and to side of cable trays.
 - Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - 4) Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

- 6. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- 7. Source quality-control reports.
- 8. Field quality-control reports.
- 9. Maintenance Data: For connectors to include in maintenance manuals.
- B. Work shall not proceed without the Owner's approval of the submitted items.

1.8 QUALITY ASSURANCE

A. The work included under this specification consists of furnishing all labor, equipment, materials, and supplies and performing all operations necessary to complete the installation of this structured cabling system in compliance with the specifications and drawings. The contractor will provide and install all of the required material to form a complete system whether specifically addressed in the technical specifications or not. All installers must be employees of the contractor.

1.9 DELIVERY, STORAGE AND HANDLING

- A. Cable shall be stored according to manufacturer's recommendations as a minimum. In addition, cable must be stored in a location protected from theft, vandalism and weather. If cable is stored outside, it must be covered with opaque plastic or canvas with provision for ventilation to prevent condensation and for protection from weather. If air temperature at cable storage location will be below 40 degrees F., the cable shall be moved to a heated (50 degrees F. minimum) location. If necessary, cable shall be stored off site at the contractor's expense.
- B. If the telecommunications contractor wishes to have a trailer on site for storage of materials, arrangements shall be made with the Owner.

1.10 DRAWINGS

- A. It shall be understood that the electrical details and drawings provided with the specification package are diagrammatic. They are included to show the intent of the specifications and to aid the telecommunications contractor in bidding the job. The telecommunications contractor shall make allowance in the bid proposal to cover whatever work is required to comply with the intent of the plans and specifications.
- B. The contractor shall verify all dimensions at the site and be responsible for their accuracy.
- C. Prior to submitting the bid, the telecommunications contractor shall call the attention of the Engineer to any materials or apparatus the telecommunications contractor believes to be inadequate and to any necessary items of work

1.11 COORDINATION

- A. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers.
 - 1. Meet jointly with telecommunications and LAN equipment suppliers, Engineer, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 - 2. Record agreements reached in meetings and distribute them to other participants.
 - 3. Adjust arrangements and locations of racks, sleeves, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of utility demarcation, telephone and LAN equipment.

B. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

PART 2 - PRODUCTS

2.1 EQUIVALENT PRODUCTS

A. Due to the nature and type of communications all products and solutions in this document have a standard of quality listed. Substitutions are listed, but products MUST demonstrate performance equivalency.

2.2 WORK AREA OUTLETS

- A. Work area cables shall each be terminated at their designated work area location in the connector types described in the subsections below. Included are modular telecommunication jacks. These connector assemblies shall snap into a faceplate.
- B. The Telecommunications Outlet Assembly shall accommodate:
 - A minimum of two (2) modular jacks unless specified. Additional copper cables as necessary.
 - 2. A blank filler will be installed when extra ports are not used.
 - 3. The same orientation and positioning of jacks and connectors shall be utilized throughout the installation.
 - 4. The modular jack shall incorporate printed label strip on the dust cap module for identifying the outlet. Printed labels shall be permanent and compliant with ANSI/TIA–606-A standard specifications. Hand printed labels shall not be accepted.
- C. Faceplates: Standard of quality is Ortronics Part # OR-403HDJ14
 The faceplates shall:
 - 1. Be of the style as appropriate to fit the modular jack used
 - 2. Have mounting screws located under recessed designation windows.
 - 3. Comply with ANSI/TIA 606-A work area labeling standard.
 - 4. Workstation Outlets: Connector assemblies mounted in faceplate. Provide number of ports as shown on the Drawings.
 - 5. Retain one of first two subparagraphs below, or retain both as required to match Division 26 Section "Wiring Devices."
 - 6. Plastic Faceplate: High-impact plastic.
 - 7. For use with snap-in jacks accommodating any combination of UTP, F/UTP, optical fiber, and coaxial work area cords.
 - 8. Acceptable substitutions are TE Connectivity, Systimax and Panduit
- D. Voice / Data Jacks: Standard of quality is Ortronics
 - 1. Jacks: 100-ohm, unshielded balanced, twisted-pair connector; four-pair, eight-position modular. Comply with ANSI/TIA-568-C.2 up to 500 MHz.
 - 2. All pair combinations must be considered, with the worst-case measurement being the basis for compliance. Modular jack performance shall be third-party verified by a nationally recognized independent testing laboratory.
 - 3. The modular jack shall be backwards compatible to Category 3, 5, and 5e.
 - 4. The modular jack shall be center tuned to category 6A test specifications.
 - 5. Cat 6A jacks to be used for Wireless Access Points for speeds in excess of 1 Gigabit transmission (A/C)

6. Acceptable substitutions are TE Connectivity, Systimax and Panduit

Part Number	Description
OR-HDJ6A-36	Ortronics Category 6A T568A/B High Density (HD) Jack Blue (Data)
OR-HDJ6A-44	Ortronics Category 6A T568A/B High Density (HD) Jack Yellow (Voice)
OR-HDJ6A-43	Ortronics Category 6A 568A/B High Density (HD) Jack Orange (Wireless A/C)
OR-HDJ6A-##	Refer to systems plans for breakdown of systems by color.

2.3 110 COPPER TERMINATION BLOCK

- A. The voice cross connect shall be a passive connection between the horizontal termination blocks and the backbone termination blocks. The wall mount frames shall be field terminated kits including all blocks, connecting blocks, and designation strips.
- B. Management rings shall be mounted between vertical columns of blocks to provide management of cross-connect wire.
- C. Backbone and horizontal blocks shall use 4-pair connecting blocks. Blocks shall be oriented so that backbone terminations are located on the left and horizontal frames are located on the right of the termination field when facing the frame assembly.
- E. Standard of quality: Ortronics
- D. 110 Block Kits shall:
 - include both the wiring block in a 50, 100 and 300 pair footprint and the connecting block C6110C5
 - 2. be manufactured using fire retardant molded plastic.
 - 3. support termination of 22-24 AWG solid conductor
 - 4. wiring block shall contain back openings for the feed through of cable
 - 5. have color-coded tips on the wiring block and color coding on the connector blocks for installation identification.
 - 6. shall use standard termination practice requiring a single conductor 110 impact tool
 - 7. have termination hardware that maintains the paired construction of the cable to facilitate minimum untwisting of the wires.
 - 8. be backwards compatible to category 3, 5 and 5e
- E. 110 Cross-Connect System Backboard Channels Shall
 - 1. be available in 300 and 900 pair sizes.
 - 2. allow the mounting of 110 100-pair blocks without legs.
 - 3. include bottom trough and grounding bar.
 - 4. be wall mountable.
 - 5. be of cold roll steel construction.
- F. 110 Wall Mount Vertical Trough Shall
 - 1. be available in single channel or dual channel configurations.
 - in dual channel configuration shall be used to provide separation for different wiring media.

- 3. be available in 300 pair and 900 pair sizes.
- 4. be wall mountable.
- 5. be used with wall mountable backboard channels. Acceptable configurations include a 300 pair and a 900 pair.
- 6. be of cold roll steel construction.

Note: Project may require horizontal analog and backbone cables to be terminated on patch panels in IDF/MDF's. Contact Telecom Representative for details.

2.4 MODULAR PATCH PANELS

- A. The Modular Patch Panels shall
 - 1. meet category 6A component compliance and be verified by a third-party nationally recognized independent testing laboratory
 - 2. be backward compatible to category 3, 5 and 5e
 - 3. be center tuned to category 6A test specifications
 - 4. Standard of Quality is Ortronics

Part Number	Description	
OR-PSAHJU48	48 Port unloaded 2RU Angled Panel (for HD Jacks)	

5. Acceptable Substitutions are TE Connectivity, Systimax and Panduit

2.5 RACKS, CABINETS, AND CABLE MANAGEMENT

The equipment rack shall provide vertical cable management and support for the patch cords at the front and back of the rack. Waterfall cable management shall be provided at the top of the rack to maintain proper bend radius and cable support. Wire management shall also be mounted above each patch panel and/or piece of equipment on the rack. The rack shall include mounting brackets for cable tray ladder rack to mount to the top of the rack.

A. Free-Standing Rack shall:

- 1. provide the necessary strain relief, bend radius and cable routing for proper installation of high performance cross connect products, meeting all specifications of ANSI/TIA 568-B.
- 2. have ANSI/TIA hole pattern on front and rear.
- 3. provide pre-drilled base for floor attachment of rack.
- 4. be available in standard color of black or white.
- Standard of quality for 2 and 4 post racks shall be Ortronics.

Part Number	Description
OR-19-84-T2SDB	Standard black TIA 2 Post Rack, 7' high with 3" channel depth
OR-19-84- T4SDA2132B	Adjustable 4 Post Rack, 7' high with tapped mounting holes
OR-19-84-SSDA2132B	Adjustable 4 Post Rack, 7' high with square mounting holes

- 6. Acceptable substitutions are Tripp Lit and Panduit
- B. The vertical cable management shall be utilized and installed with the 2 and 4 post racks.

- 1. They shall include snap on covers/doors that can swing either direction.
- 2. Standard of quality for vertical cable management shall be Ortronics.

Part Number	Description
OR-DVMS706	Double Sided 6" Vertical Cable Management with door, 6" W x 6.58" D x 7' H (for end of row or single racks)
OR-DVMS710	Double Sided Vertical Cable Management with door,10" W x 13.15"D x 7' H (for between racks)

3. Acceptable substitutions are Tripp Lite and Panduit

C. Wall Mounted Cabinet shall:

- 1. provide the necessary strain relief, bend radius and cable routing for proper installation of high performance cross connect products, meeting all specifications of ANSI/TIA 568-C.
- have wall mount braces with locator posts for easy wall mounting.
- 3. have side access points that allow for access to manage/install distribution cables in the vertical channels.
- 4. be lockable.
- 5. contain integrated vertical cable management
- 6. The standard of quality for wall mount cabinet shall be Ortronics:

Part Number	Description
OR-MMW122426P-B	24"W x 26"D x 23.5"H, plexi-glass door 12 RU; 150 lbs*
OR-MMW262426P-B	24"W x 26"D x 48"H, plexi-glass door 26 RU; 300 lbs*

*weight capacity

- 7. Acceptable substitutions are Tripp Lite and Panduit
- D. Free-Standing Cabinet shall have full flat mesh front door with locking swing handles1. Standard of quality is Ortronics

Part Number	Description	
OR-GXC422442-A1-B	Ortronics GX Server Cabinet, free-standing, 42U, 24" W, 42"D, with side panels (cabinet accessories to be specified	
OR-GXC422942-A1-B	Ortronics GX Network Cabinet, free-standing, 42 RU, 29.5" W, 42" D with side panels (cabinet accessories to be specified).	

2. Acceptable substitutions are Tripp Lite and Panduit

2.6 HORIZONTAL DISTRIBUTION CABLE

- A. All horizontal data station cable and voice cable shall terminate on modular patch panels (copper), or patch/splice cabinets (fiber) in their respective MDF or IDF as specified on the drawings.
- B. Copper or fiber cable that offers EPDs (Environmental Product Declaration) and / or HPDs (Health Product Declaration) to apply toward LEED certification are PREFERRED.
 - 1. Products covered by EPDs and HPDs contribute towards one (1) point each in the Material and Resources credit (MRc) category for projects pursuing those credits

- 2. Products that have both EPDs and HPDs will effectively contribute towards two (2) separate credits in the MR category
- C. 100 OHM Category 6A UTP with fire-resistant thermoplastic jacket with separator or divider between pairs and isolation wrap.
 - 1. Physical Characteristics:
 - a. Plenum
 - 1) Insulation FEP
 - 2) Jacket: FR, low smoke PVC
 - 3) Nominal Velocity of Propagation: 73
 - b. Non Plenum
 - 1) Insulation: Polyolefin
 - 2) Jacket: FR PVC
 - 3) Nominal Velocity of Propagation: 70
 - c. Solid annealed copper conductors
 - d. 23 AWG copper conductors
 - e. Low-dielectric thermoplastic insulation
 - f. Pair-separator for improved performance
 - g. Characteristic Impedance: 100 ± 15 Ohms
 - h. Comply with UL 444
 - i. Comply with NFPA 262
 - j. Comply with ICEA S-90-661 for mechanical properties.
 - k. Comply with ANSI/TIA-568-C.2 for Category 6A UTP cables.
 - I. Verified for Category 6A performance by an NRTL
 - m. RoHS compliant materials
 - 2. Performance Characteristics:
 - a. Guaranteed electrical performance up to 400 MHz
 - Guaranteed 3 dB margin over ANSI/TIA-568-C.2 requirements for NEXT and PSNEXT
 - c. Guaranteed 4 dB margin over ANSI/TIA-568-C.2 calculated requirements for ACR and PSACR
 - d. Printed with unique alpha-numeric code for each package of product
 - e. Printed in both feet and meters with the units of length decrementing to indicate the amount of cable remaining in the box.
 - f. Tip colors shall be a lighter version of the ring color.
 - g. 4 pair UTP for Wireless Access Points for speeds in excess of 1 Gigabit transmission (A/C): Cat 6A with isolation wrap (no ground required) or actual shield (needs grounding).
 - 3. Design Make:
 - a. Standard of quality is Superior Essex 10GainXP Cat 6A UTP.

Plenum Part Number	Description	on
6H-272-2B	Data / Blue / CMP	
6H-272-6B	Voice / Yellow CMP	4

Non-Plenum Part	Description	
Number		
6H-272-2A	Data / Blue / CMR	

6H-272-6A	Voice / Yellow CMR	
6H-2/2-6A	Voice / Yellow Civik	

- b. Acceptable Substitutions are TE Connectivity, Systimax and Panduit
- Standard of quality for Cat 6A Superior Essex 10GainXP Plenum (CMP) UTP w/ isolation wrap

Plenum Part Number	Description	
6H-272-DB	Wireless / Orange / CMP	

Non-Plenum Part	Description
Number	
6H-272-DA	Wireless / Orange / CMR

 Acceptable Substitutions are TE Connectivity (shielded), Panduit (Isolation Wrap) and Systimax (shielded)

2.7 BACKBONE CABLE

- A. Intrabuilding multipair unsheilded twisted pair
 - 1. General purpose 25 pair plenum Cat 5e (Superior Essex cmp part #51-478-48)
 - 2. For higher pair counts when Cat 3 is acceptable; 100 pair category 3 plenum unshielded twisted pair (Superior Essex Category 3 cmp part number 18-799-36) may be used.

B. Fiber Optic Cables

- 1. Fiber cable that offers EPDs (Environmental Product Declaration) and / or HPDs (Health Product Declaration) to apply toward LEED certification are PREFERRED.
- 2. Products covered by EPDs and HPDs contribute towards one (1) point each in the Material and Resources credit (MRc) category for projects pursuing those credits
- 3. Products that have both EPDs and HPDs will effectively contribute towards two (2) separate credits in the MR category
- 4. Multimode: Armored Optical Fiber Plenum (OFCP) Tight Buffered With 10 Gigabit OM3 Laser Optimized 50/125 Optical Fibers
 - a. Each Multimode Fiber shall be:
 - 1) Graded-index optical fiber wave-guide with nominal 50/125µm-core/cladding diameter.
 - 2) The fiber shall comply with the latest revision of ANSI/TIA-492AAAC.
 - 3) Attenuation shall be measured in accordance with ANSI/TIA-455-78.
 - 4) Information transmission capacity shall be measured in accordance with ANSI/TIA-455-204 or –455-220.
 - 5) The measurements shall be performed at $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$.
 - 6) Maximum attenuation dB/km @ 850/1300 nm: 3.5/1.5
 - 7) Bandwidth: 1500 MHz-km @ 850nm for overfilled launch,
 - 8) Bandwidth 500 MHz-km @ 1300nm.

- Optical Fiber shall be laser optimized and guaranteed for 40/100 Gigabit Ethernet distances of 100 meters
- 10) Optical Fiber shall be laser optimized and guaranteed for 10 Gigabit Ethernet distances of 300m/300m for 850nm and 1300nm respectively
- Optical Fiber shall be laser optimized and guarantee Gigabit Ethernet distances of 1000m/600m for 850nm and 1300nm respectively
- b. Physical Characteristics:
 - 1) Shall be suitable for use in indoor applications.
 - 2) Shall be suitable for use in risers, plenums and horizontal applications.
 - 3) Shall be available with a fiber strand count range from 6 to 144.
 - 4) Shall meet NFPA 626
 - 5) Shall comply with Telcordia GR-409.
 - 6) Shall comply with the requirements of ICEA S-83-596.
 - Buffered fibers shall be color coded in accordance with TIA-598 with an overall aqua jacket.
 - 8) Shall have a central strength member
 - 9) Suitable for operation between -20°C to +75°C
 - 10) Shall meet UL 1569, UL 1651
 - 11) Shall be RoHS compliant
 - 12) Shall have spiral wrapped aluminum armor and outer jacket
- c. Design Make:
 - 1) Standard of quality for Premise Distribution optical fiber cable with OM3 laser optimized 50/125 micron multi mode fiber is Superior Essex, part numbers below

Part Number	Description	
L4012N401	12 strand armored laser optimized 50 micron multi mode	
L4024NK1Q	24 strand armored laser optimized 50 micron multi mode	
L4048N401	48 strand armored laser optimized 50 micron multi mode	

- 2) Acceptable Substitutions are TE Connectivity, Systimax and Corning
- Single Mode: Armored Optical Fiber Plenum (OFCP) Tight Buffered With Enhanced (Low Water Peak) Single-mode Optical Fibers
 - Each Single-mode Fiber shall be:
 - Class IVa dispersion unshifted single mode optical fibers with Low Water Peak complying with ANSI/ TIA-492CAAB-2000.
 - The zero dispersion wavelength shall be between 1300 nm and 1320 nm. The ANSI/TIA-455-168 maximum value of the dispersion slope shall be no greater than 0.090 ps/km-nm². Dispersion measurements shall be made in accordance with ANSI/TIA-455-169 or ANSI/TIA-455-175-B.
 - 3) The nominal mode field diameter shall be 9.1 μ m with a tolerance of \pm 0.4 μ m at 1310 nm when measured in accordance with ANSI/TIA-455-191-B.
 - 4) Transmission Characteristics:
 - 5) Maximum cabled attenuation dB/km @ 1310/1550 nm: 0.7/0.7
 - 6) The cabled cutoff wavelength shall be ≤1260 nm when measured in accordance with ANSI/TIA-455-80-C
 - 7) Distance vs. bandwidth using a Laser transmitter operating at a 1310 nm wavelength

- b. Physical Characteristics:
 - 1) Shall be suitable for use in indoor applications.
 - 2) Shall be suitable for use in risers, plenums and horizontal applications.
 - 3) Shall be available with a fiber strand count range from 6 to 144.
 - 4) Shall comply with Telcordia GR-409.
 - 5) Shall comply with the requirements of ICEA S-83-596.
 - Buffered fibers shall be color coded in accordance with TIA-598 with an overall yellow jacket.
 - 7) Shall have a central strength member
 - 8) Suitable for operation between -20°C to +75°C
 - 9) Shall meet UL 1569, UL 1651
 - 10) Shall have spiral wrapped aluminum armor and outer jacket
- c. Design Make:
 - Standard of quality for Armored Plenum Single Mode Low Water Peak is Superior Essex

Superior Essex Part Numbers

Part Number	Description
L40123401	12 strand, Single-Mode armored plenum optical fiber
L40243K1Q	24 strand, Single-Mode armored plenum optical fiber

2) Acceptable Substitutions are TE Connectivity, Systimax and Corning

C. DAS (Distributed Antenna System)

- 1. Regardless of which DAS active equipment is to be installed, (Andrews, Mobile Access, Tyco Electronics, etc) standard of quality for Copper DAS cabling & connectors as well as fiber shall be Superior Essex.
- 2. DAS Integrator will be required to work with certified cabling contractor for pulling of and termination of all DAS copper and fiber cabling infrastructure.
 - a. RF Feeder Infrastructure
 - 1) Cable
 - a) LHF Series Low Loss High Flexible Foam Dielectric
 - b) HFSC Series Super Flexible Foam Dielectric
 - c) FTTA Fiber to the Antenna
 - Jumpers
 - Available in % inch and ½ inch diameters, jumper cables are used in areas that require extremely small bending radius, such as between main feeders and antennas or between main feeders and RF equipment
 - 3) Connectors
 - e) DIN Series for LHF and HFSC
 - f)N Series for LHF and HFSC
 - In Building Infrastructure
 - 1) Cable Available in Plenum or Riser
 - g) DAS Hybrid Fiber + Copper

- h) LHF Riser Low Loss High Flexible Foam Dielectric
- i) LHF Plenum Low Loss High Flexible Air Dielectric
- j) HFSC Riser Super Flexible Foam Dielectric
- k) HFSC Plenum Super Flexible Air Dielectric
- 2) Jumpers Available in Plenum or Riser
 - a) Available in ½ inch diameters, jumper cables are used in areas that require an extremely small bending radius between main feeders and antennas or between main feeders and RF equipment.
- 3) Connectors
 - a) DIN Series for LHF and HFSC
 - b) N Series for LHF and HFSC

2.8 FIBER OPTIC TERMINATION HARDWARE

A. FIBER OPTIC ENCLOSURES

- 1. Fiber optic termination hardware is rack mountable, lockable, and holds various coupler panels based on density requirements.
- 2. Fusion Splicing shall be the preferred termination style for any new installations, but mechanical terminations may be used as well.
- 3. Standard of quality is Ortronics
- 4. Acceptable Substitutions are TE Connectivity, Systimax and Corning
- 5. Fiber Enclosures

Part Number	Description
OR-FC01U-C	1U combo splice/patch enclosure, holds 3 adapter panels,
OR-FC02U-C	2U combo splice/patch enclosure, holds 6 adapter panels,
OR-FC04U-C	4U combo splice/patch enclosure, holds 12 adapter panels,

Splice trays for combo panels sold separately

Part Number	Description
OR-FST2-F012	Fusion Splice Tray for 12 splices
OR-20500043	Splice Sleeves for 12 strand tray 40mm x 3.0mm 50 pack

Fan Out Kits

Part Number	Description	
OR-61500858	Breakout Kit 12 fiber	

B. FIBER OPTIC ADAPTER PANELS

Ortronics Adapter panels will be of 6 duplex SC connectors (12 fibers) for multimode connections.

Part Number	Description
OR-OFP-SCD12LC	6-SC Duplex multimode, aqua adapters, ceramic sleeve
OR-OFP-SCD12AC	6-SC Duplex Single mode, blue adapters, ceramic sleeve
OR-OFP-BLANK	Blank Filler modules

C. FIBER OPTIC PIGTAILS / CONNECTORS

- 1. For fiber splicing, utilize Ortronics 12 strand SC fiber pigtails Ortronics part numbers:
 - a. Single Mode OR-P1TC4ZRRZZZ001M
 - b. Multi Mode OR-P1TF4ZRFZZZ001M
- 2. When mechanical terminations are acceptable for MAC work, Utilize Ortronics SC multimode (OR-205KNT9FA-50T) Infinium Connectors for standard terminations.

Part Number	Description
OR-P1TC4ZRRZZZ001M	12 strand Single mode SC fusion splice pigtail
OR-P1TF4ZRFZZZ001M	12 strand Multimode SC fusion splice pigtail
OR-205KNT9RA-09	SC Single mode Infinium mechanical connectors
OR-205KNT9FA-50T	SC Multimode Infinium mechanical connectors

3. Acceptable Substitutions are TE Connectivity, Systimax and Corning

2.9 PATCH CORDS & FIBER JUMPERS

- A. The contractor shall provide factory terminated and tested optical fiber patch cords for the complete cabling system.
- B. Fiber jumper cords shall:
 - Standard of quality for Multimode duplex 5 meter 50 um 10 gig aqua for multimode applications is Ortronics SC to SC (OR-P1DF2LRGZGZ005M).
 - 2. Provide four (4) duplex SC-SC 5 meter jumpers per switch in each TR.
 - 3. Standard of quality for Single Mode duplex 5 meter for single mode applications is Ortronics SC to SC (OR-P1DC2IRSZSZ005M).
 - 4. Provide two (2) duplex SC-SC 5 meter jumpers per rack in each TR.
 - 5. Acceptable substitutions are Quiktron, TE Connectivity, Systimax and Corning

2.10 POWER - UPS AND PDU OPTIONS

- A. UPS (Uninterrupted Power Supply)
 - Standard of quality for Communications Rack Online UPS is Tripp Lite. Substituted material must be able to demonstrate product equality
 - Provide true online battery back-up, power conditioning UPS, rack mounted in each MDF/IDF to serve network electronics as indicated on the drawings. UPS shall have the following features:
 - a. 5000/3000/2200/1500 VA capacity as indicated
 - b. Output operating range—280V (5000VA)/120V (<3000VA) nominal
 - c. Communications—Unit shall provide an Ethernet based SNMP management interface, through the LAN to provide remote diagnostics and alarm conditions.
 - d. Expandability—Unit shall provide for the connection if external battery packs in modules to extend the total unit run-time.
 - e. Complete battery independence- Battery independent restart ensures automatic UPS power-up without user interaction after lengthy power outages, even when batteries are completely drained\discharged.
 - f. Cord Length 10'.

- g. Transfer Time- zero transfer time to battery.
- h. Battery Type- maintenance free sealed lead acid with electrolyte: leakproof.
- i. LED Status- On battery/Replace Battery/and overload indicators.
- j. Audible Alarms.
- k. Filtering -full time multi- pole noise filtering
- I. All UPS units shall be rack mountable with proper mounting hardware and support.
- m. UPS External battery Packs for 2200 or 3000 VA Tripp Lite for systems that specify extended run time such as the phone system.

3. UPS Sizes

- a. 1500 VA UPS (Tripp Lite part number SU1500RTXLCD2U)
 - 1) Output Power Capacity- 1350W/ 1500VA.
 - 2) Nominal Output Voltage- 120V.
 - 3) Output Connections (6) NEMA 5-15R
 - 4) Nominal Input Voltage- 120V.
 - 5) Input connections- NEMA 5-15P.
- b. 2200 VA UPS (Tripp Lite part number SU2200RTXLCD2U).
 - 1) Output Power Capacity 1800 wattts/2200VA.
 - 2) Nominal Output Voltage- 120V.
 - 3) Output Connections- (6) NEMA 5-15\20R and (1) NEMA L5-20R.
 - 4) Nominal Input Voltage- 120V.
 - 5) Input connections NEMA 5-20P.
 - 6) Rack Mounted 2U rack space.
 - 7) Backup time- 12 minutes at half load (925 watts) 4 minutes at full load (1800 watts.)
 - 8) Surge energy Rating 570 joules.
- c. 3000 VA UPS (Tripp Lite part number SU3000RTXLCD3U)
 - 1) Output Power Capacity- 2700 wattts/3000VA.
 - Nominal Output Voltage- 120V.
 - Output Connections- (4) NEMA 5-15R and (4) NEMA 5-15\20R and (1) NEMA L5-30.
 - 4) Nominal Input Voltage- 120V.
 - 5) Input connections- NEMA L30P.
 - 6) Rack Mounted 2U rack space.
 - Backup time- 11 minutes at half load (1350 watts) 4 minutes at full load (2700 watts.)
 - 8) LED Status- On battery/Replace Battery/and overload indicators.
 - 9) Surge energy Rating 570 joules.
- d. 5000 VA UPS (Tripp Lite part number SU5000RT4U)
 - 1) Output Power Capacity--3800 Watts/5000 VA
 - 2) Max Configurable Power--3800 Watts/ 5000 VA
 - 3) Nominal Output Voltage--120V, 208V
 - 4) Power factor equals 75% or greater
 - 5) Output Voltage Distortion--Less than 2%
 - 6) Output Frequency--(sync to mains) 50/60 Hz +/- 3 Hz user adjustable +/- 0.1
 - 7) Other Output Voltages--240
 - 8) Crest Factor--3:1
 - 9) Topology--Double Conversion Online
 - 10) Waveform Type--Sine wave
 - 11) Output Connections--(8) NEMA 5-15\20R, (2) NEMA L6-30R, (2) NEMA L6-20R
 - 12) Bypass--Internal Bypass (Automatic and Manual)

- 13) Nominal Input Voltage--208V
- 14) Input Frequency--50/60 Hz +/- 5 Hz (auto sensing)
- 15) Input Connections--NEMA L14-30P
- 16) Input voltage range for main operation--100 140VAC (L1-N:L2-N)
- 17) Input voltage adjustable range for mains operation--85 136V
- 18) Other Input Voltages--240
- 19) Interface Port(s)--RJ-45 10/100 Base-T
- 20) Control panel LÉD status display with load and battery bar-graphs and On Line : On Battery : Replace Battery : Overload and Bypass Indicators
- 21) Alarm when on battery : distinctive low battery alarm : overload continuous tone alarm
- 22) Emergency Power Off (EPO)
- 23) Surge energy rating 365 Joules
- 24) Filtering Full time multi-pole noise filtering: 0.3% IEEE surge let-through: zero clamping response time: meets UL 1449
- B. PDU Standard of quality is Tripp Lite part number PDUMV20NET SWITCHED/IP FEATURE SET REQUIRED. Substituted material must be able to demonstrate product equivalency.
 - Raceway and all components shall be UL listed. The base and cover shall be ivory in color, and shall be attached to the cable ladder of the rack system or wall field as per the drawings.
 - 2. Electrical outlet strip shall have (13) NEMA 5-15\20 outlets.
 - Provide all attachment hardware required to securely attach the outlet strip to the back of the vertical cable ladder or wallfield. Refer to the detailed drawings for required locations.
 - 4. All power strips shall be equipped with surge protection.
 - 5. All power strips shall be come with adjustable mounting brackets for 2 or 4 post installation.
 - 6. Strips shall be 20A-120V with NEMA 5·20P on a 15 foot line cord.
 - 7. Install and test all outlets prior to project completion.
 - 8. Provide outlet strip with attached cord and 3-prong plug.
 - 9. All power strips will plug into UPS units unless otherwise specified.

2.11 COPPER CABLE PROTECTION UNITS

- A. All copper circuits shall be provided with protection between each building with an entrance cable protector panel. All building-to-building circuits shall be routed through this protector. The protector shall be connected with a #6 AWG copper bonding conductor between the protector ground lug and the TC ground point.
- B. Standard of quality of protection units is Circa.
- C. The two most frequently used lightning protectors are listed below.
- D. Circa Protector -- "Circa", part number 1900A1-100, and Circa 3B3S-300 "Red" modules -100 for 100 pair.
- E. Use Circa ,part number 1880ENA1/NSC-6 for single drops of 6-pair or less. Use Circa, part number 3B1E gas protector modules.

Part Number / Series	Description
1890BC1-25	25 Pair Protector
1890BC1-50	50 Pair Protector
1900A1-100K	100 Pair Protector
3B1E	Solid State Protector Module for 189B1
2626QC/QC	Protection Block (66 connection must add gas modules 3B1E (black) or 3B3E (red))
4B1E	Gas state Protector 5 Pin Black with Heat Coil
4B3S-75	Protector Module 5 Pin Red Solid state with Heat Coil
3B3S-300	Protector module 5 Pin Red Solid state w/o Heat coil
4B1S-300	Protector Module 5 Pin Black Solid state with Heat Coil
1880ENA1/NSC-6	6 Pair Protector

2.12 GROUNDING AND BONDING

- A. The facility shall be equipped with a Telecommunications Bonding Backbone (TBB). This backbone shall be used to ground all telecommunications cable shields, equipment, racks, cabinets, raceways, and other associated hardware that has the potential to act as a current carrying conductor. The TBB shall be installed independent of the building's electrical and building ground and shall be designed in accordance with the recommendations contained in the ANSI/TIA-607 Telecommunications Bonding and Grounding Standard.
- B. The main entrance facility/equipment room in each building shall be equipped with a telecommunications main grounding bus bar (TMGB). Each telecommunications room shall be provided with a telecommunications ground bus bar (TGB). The TMGB shall be connected to the building electrical entrance grounding facility. The intent of this system is to provide a grounding system that is equal in potential to the building electrical ground system. Therefore, ground loop current potential is minimized between telecommunications equipment and the electrical system to which it is attached.

- C. All racks, metallic backboards, cable sheaths, metallic strength members, splice cases, cable trays, etc. entering or residing in the TR or ER shall be grounded to the respective TGB or TMGB using a minimum #6 AWG stranded copper bonding conductor and compression connectors.
- D. All wires used for telecommunications grounding purposes shall be identified with a green insulation. Non-insulated wires shall be identified at each termination point with a wrap of green tape. All cables and bus bars shall be identified and labeled in accordance with the System Documentation Section of this specification.
- E. Standard of quality for all grounding and bonding products shall be Ortronics.
- F. Acceptable substitutions are Erico and Panduit

PART 3 - EXECUTION

3.1 WORK AREA OUTLETS

- A.Cables shall be coiled in the in-wall or surface-mount boxes if adequate space is present to house the cable coil without exceeding the manufacturer's bend radius. In hollow wall installations where Caddy box-eliminators are used, excess wire can be stored in the wall. No more than 12" of UTP and 36" of fiber slack shall be stored in an in-wall box, modular furniture raceway, or insulated walls. Excess slack shall be loosely coiled and stored in the ceiling above each drop location when there is not enough space present in the outlet box to store slack cable.
- B. Cables shall be dressed and terminated in accordance with the recommendations made in the ANSI/TIA 568-C.1 document, manufacturer's recommendations and best industry practices.
- C. Pair untwist at the termination shall not exceed 12 mm (one-half inch).
- D. Bend radius of the twisted-pair horizontal cable shall not be less than 4 times the outside diameter of the cable.
- E. The cable jacket shall be maintained to within 25mm (one inch) of the termination point.
- F. Data jacks, unless otherwise noted in drawings, shall be located in the bottom position(s) of each faceplate. Data jacks in horizontally oriented faceplates shall occupy the right-most position(s).
- G. Voice jacks shall occupy the top position(s) on the faceplate. Voice jacks in horizontally oriented faceplates shall occupy the left-most position(s).

3.2 HORIZONTAL DISTRIBUTION CABLE INSTALLATION

- A.Cable shall be installed in accordance with manufacturer's recommendations and best industry practices.
- B. A pull cord (nylon; 1/8" minimum) shall be co-installed with all cable installed in any conduit.

- C. Cable raceways shall not be filled greater than the ANSI/TIA 569-B maximum fill for the particular raceway type or 40%.
- D. Cables shall be installed in continuous lengths from origin to destination (no splices) except for transition points, or consolidation points.
- E. Where transition points, or consolidation points are allowed, they shall be located in accessible locations and housed in an enclosure intended and suitable for the purpose.
- F. The cable's minimum bend radius and maximum pulling tension shall not be exceeded.
- G. If a J-hook or trapeze system is used to support cable bundles all horizontal cables shall be supported at a maximum of 48 to 60 inch (1.2 to 1.5 meter) intervals. At no point shall cable(s) rest on acoustic ceiling grids or panels.
- H. Horizontal distribution cables shall be bundled in groups of no more than 50 cables. Cable bundle quantities in excess of 50 cables may cause deformation of the bottom cables within the bundle and degrade cable performance.
- Cable shall be installed above fire-sprinkler systems and shall not be attached to the system or any ancillary equipment or hardware. The cable system and support hardware shall be installed so that it does not obscure any valves, fire alarm conduit, boxes, or other control devices.
- J. Cables shall not be attached to ceiling grid or lighting fixture wires. Where support for horizontal cable is required, the contractor shall install appropriate carriers to support the cabling.
- K.Any cable damaged or exceeding recommended installation parameters during installation shall be replaced by the contractor prior to final acceptance at no cost to the Owner.
- L. Cables shall be identified by a self-adhesive label in accordance with the System Documentation Section of this specification and ANSI/TIA 606-A. The cable label shall be applied to the cable behind the faceplate on a section of cable that can be accessed by removing the cover plate.
- M. Unshielded twisted pair cable shall be installed so that there are no bends smaller than four times the cable outside diameter at any point in the run and at the termination field.
- N. Pulling tension on 4-pair UTP cables shall not exceed 25-lbf for a four-pair UTP cable.

3.3 HORIZONTAL CROSS CONNECT INSTALLATION

- A.Cables shall be dressed and terminated in accordance with the recommendations made in the ANSI/TIA 568-C standard, manufacturer's recommendations and best industry practices.
- B. Pair untwist at the termination shall not exceed 13 mm (0.5 inch).
- C. Bend radius of the cable in the termination area shall not exceed 4 times the outside diameter of the cable.

- D. Cables shall be neatly bundled and dressed to their respective panels or blocks. Each panel or block shall be fed by an individual bundle separated and dressed back to the point of cable entrance into the rack or frame.
- E. The cable jacket shall be maintained as close as possible to the termination point.
- F. Each cable shall be clearly labeled on the cable jacket behind the patch panel at a location that can be viewed without removing the bundle support ties. Cables labeled within the bundle, where the label is obscured from view shall not be acceptable.

3.4 OPTICAL FIBER TERMINATION HARDWARE

- A. Fiber slack shall be neatly coiled within the fiber splice tray or enclosure. No slack loops shall be allowed external to the fiber panel.
- B. Each cable shall be individually attached to the respective splice enclosure by mechanical means. The cables strength member shall be securely attached the cable strain relief bracket in the enclosure.
- C. Each fiber bundle shall be stripped upon entering the splice tray and the individual fibers routed in the splice tray.
- D. Each cable shall be clearly labeled at the entrance to the splice enclosure. Cables labeled within the bundle shall not be acceptable.
- E. A maximum of 12 strands of fiber shall be spliced in each tray
- F. All spare strands shall be installed into spare splice trays.

3.5 BACKBONE CABLE INSTALLATION

- A. Backbone cables shall be installed separately from horizontal distribution cables
- B. A pull cord (nylon; 1/8" minimum) shall be co-installed with all cable installed in any conduit.
- C. Where cables are housed in conduits, the backbone and horizontal cables shall be installed in separate conduits
- D. Where backbone cables are installed in an air return plenum, riser rated cable shall be installed in metallic conduit.
- E. Where backbone cables and distribution cables are installed in a cable tray or wireway, backbone cables shall be installed first and bundled separately from the horizontal distribution cables.
- F. All backbone cables shall be securely fastened to the sidewall of the TR on each floor.
- G. Backbone cables spanning more than three floors shall be securely attached at the top of the cable run with a wire mesh grip and on alternating floors or as required by local codes.
- H. Vertical runs of cable shall be supported to messenger strand, cable ladder, or other method to provide proper support for the weight of the cable.
- Large bundles of cables and/or heavy cables shall be attached using metal clamps and/or metal banding to support the cables.

3.6 COPPER TERMINATION HARDWARE

- A. Cables shall be dressed and terminated in accordance with the recommendations made in the ANSI/TIA-568-C standard, manufacturer's recommendations and best industry practice.
- B. Pair untwist at the termination shall not exceed 12 mm (one-half inch).
- C. Bend radius of the cable in the termination area shall not exceed 4 times the outside diameter of the cable.
- D. Cables shall be neatly bundled and dressed to their respective panels or blocks. Each panel or block shall be fed by an individual bundle separated and dressed back to the point of cable entrance into the rack or frame.
- E. The cable jacket shall be maintained to within 25 mm (one inch) of the termination point.
- F. Each cable shall be clearly labeled on the cable jacket behind the patch panel at a location that can be viewed without removing the bundle support ties. Cables labeled within the bundle, where the label is obscured from view shall not be acceptable.

3.7 RACKS

A.Racks shall be securely attached to the concrete floor using a minimum 3/8" hardware or as required by local codes.

- B. Racks shall be placed with a minimum of 36 inch clearance from the walls on all sides of the rack. When mounted in a row, maintain a minimum of 36 inches from the wall behind and in front of the row of racks and from the wall at each end of the row.
- C. All racks shall be grounded to the telecommunications ground bus bar in accordance with Section 2.11 of this document.
- D. Rack mount screws not used for installing patch panels and other hardware shall be bagged and left with the rack upon completion of the installation.
- E. Wall mounted termination block fields shall be mounted on 4' x 8' x .75" void free plywood. The plywood shall be mounted vertically 12" above the finished floor. The plywood shall be painted with two coats of white fire retardant paint.
- F. Wall mounted termination block fields shall be installed with the lowest edge of the mounting frame 18" from the finished floor.

3.8 FIRESTOP SYSTEM

A. All firestop systems shall be installed in accordance with the manufacturer recommendations and shall be completely installed and available for inspection by the local inspection authorities prior to cable system acceptance.

3.9 GROUNDING SYSTEM

- A. The TBB shall be designed and/or approved by a qualified PE, licensed in the state that the work is to be performed. The TBB shall adhere to the recommendations of the ANSI/TIA 607-A standard, and shall be installed in accordance with best industry practice.
- B. Installation and termination of the main bonding conductor to the building service entrance ground shall be performed by a licensed electrical contractor.

3.10 IDENTIFICATION AND LABELING

- A. The contractor shall develop and submit for approval a labeling system for the cable installation. The Owner will negotiate an appropriate labeling scheme with the successful contractor. At a minimum, the labeling system shall clearly identify all components of the system: racks, cables, panels and outlets. The labeling system shall designate the cables origin and destination and a unique identifier for the cable within the system. Racks and patch panels shall be labeled to identify the location within the cable system infrastructure. All labeling information shall be recorded on the as-built drawings and all test documents shall reflect the appropriate labeling scheme. Labeling shall follow the guidelines of ANSI/TIA-606-A.
 - B. Comply with requirements in Division 09 Section "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
 - C. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

- D. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of ANSI/TIA-606-B. Furnish electronic record of all drawings, in software and format selected by Owner.
- E. Cable and Wire Identification:
 - 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 - b. Label each unit and field within distribution racks and frames.
 - 3. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
 - 4. Both ends of all backbone cable shall be labeled. Labels will be self laminating and machine generated. The label shall contain the following information:
 - a. The Origination (TR it is feeding from).
 - b. The Destination (TR it is feeding).
 - c. Number of pairs or fibers
 - 5. Both ends of all horizontal cables shall be labeled. Labels shall be self-laminating and machine generated. The cable, workstation faceplate, panel ports and block positions shall be labeled with the room number, location in room, outlet type & # (data D1, D2, etc). In rooms with multiple outlets, label clockwise as you enter the room: 1, 2, 3 e.g. a data port at the first drop location to the left of Room 216 door would be (216-1 D1). When terminating workstation cables in the TR, organize and label the cables in numeric room number order at the patch panel.
 - 6. CNS will approve all labeling schematics prior to installation. "As-Built" drawing with all outlets identified shall be provided.
- F. Labels shall be self-laminating or computer-printed type with printing area and font color that contrasts with cable jacket color. Handwritten labels will not be acceptable.
 - Cables use flexible vinyl or polyester that flex as cables are bent.
 - All labeling methodology, identification logic, and materials will be approved by customer prior to installation.
 - 3. If existing labeling scheme is in place, all labeling will defer to currant scheme as to stay consistent with facility.

3.11 TESTING AND ACCEPTANCE

A. General

- 1. All cables and termination hardware shall be 100% tested for defects in installation and to verify cabling system performance under installed conditions according to the requirements of ANSI/TIA 568-C; marginal passes (*PASS) are not acceptable. All pairs of each installed cable shall be verified prior to system acceptance. Any defect in the cabling system installation including but not limited to cable, connectors, feed through couplers, patch panels, and connector blocks shall be repaired or replaced in order to ensure 100% useable conductors in all cables installed.
- 2. All cables shall be tested in accordance with this document, the ANSI/TIA standards, the Ortronics Certification Program Information Manual and best industry practice. If any of these are in conflict, the Contractor shall bring any discrepancies to the attention of the project team for clarification and resolution.

B. Copper Channel Testing

- All twisted-pair copper cable links shall be tested for continuity, pair reversals, shorts, opens and performance as indicated below. Additional testing is required to verify Category performance.
- 2. Horizontal cabling shall be tested using a Level III test unit for category 6 performance compliance.
- 3. The basic tests required are:
 - a. Wire Map
 - b. Length
 - c. Attenuation
 - d. NEXT (Near end crosstalk)
 - e. Return Loss
 - f. ELFEXT Loss
 - g. Propagation Delay
 - h. Delay skew
 - i. PSNEXT (Power sum near-end crosstalk loss)
 - j. PSELFEXT (Power sum equal level far-end crosstalk loss)
- 4. Continuity Each pair of each installed cable shall be tested using a test unit that shows opens, shorts, polarity and pair-reversals, crossed pairs and split pairs. Shielded/screened cables shall be tested with a device that verifies shield continuity in addition to the above stated tests. The test shall be recorded as pass/fail as indicated by the test unit in accordance with the manufacturers' recommended procedures, and referenced to the appropriate cable identification number and circuit or pair number. Any faults in the wiring shall be corrected and the cable re-tested prior to final acceptance.

5. Length - Each installed cable link shall be tested for installed length using a TDR type device. The cables shall be tested from patch panel to patch panel, block to block, patch panel to outlet or block to outlet as appropriate. The cable length shall conform to the maximum distances set forth in the ANSI/TIA 568-C Standard. Cable lengths shall be recorded, referencing the cable identification number and circuit or pair number. For multi-pair cables, the shortest pair length shall be recorded as the length for the cable.

6. Category 6 Performance

Shall meet the channel requirements outlined below for a 100-meter, 4-connector channel.

Channel Margin Guarantees

Margin vs. TIA-568-C.2
3%
5 dB
5 dB
3 dB
5 dB
5 dB
5 dB
5 dB

C. Fiber Testing

- 1. Testing procedures shall be in accordance with the following:
 - a. ANSI/TIA 568-B
 - b. ANSI/TIA 568-B.1
 - c. ANSI/TIA 526-7, Method A.1
 - d. ANSI/TIA 526-14A, Method B
 - e. TSB-140 Tier 1 fiber testing is required. Tier 2 Fiber Testing is recommended
- 2. Preparation
 - a. Properly clean all connectors, adapters, and jumpers prior to testing.
 - b. Insure that the testing jumpers are of the same fiber core diameter and connector type as the fibers to be tested.
 - c. The power meter shall be properly calibrated prior to testing. Contractor to provide written confirmation of the calibration, with the power meter serial number, to the Owner, if requested. If this documentation is not available upon request, the Contractor shall re-test all optical fiber cables after documented calibration of the power meter is accomplished.
- 3. Test Equipment
 - a. Optical power meter and source (Certification tester Fluke or Agilent preferred). Suitable OTDR with launch cable for Tier 2 testing. OTDR Launch Cable length recommendation is 75 meters for MMF and 300 meters for SMF systems.
- 4. Testing
 - a. All Multimode fibers shall be tested to the requirements of ANSI/TIA-568-B, TIA-525-14A (Method A.1) and TSB-140. Optical fibers shall be tested at both 850 nm and 1300 nm wavelengths for end-to-end insertion loss .and Bi –Directional (MTR to TR-1, TR-1 to MTR)

- b. All Single-mode fibers shall be tested to the requirements of ANSI/ TIA-568-B, TIA-526-7 (or Method A.1) and TSB-140. Optical fibers shall be tested at both 1310 nm and 1550 nm wavelengths for end-to-end insertion loss and Bi-Directional (MTR to TR-1, TR-1 to MTR)
- c. Insure that the power meter and light source are set to the same wavelength prior to testing each fiber.
- d. Connect an appropriate test jumper to the light source and power meter.
- e. Power on both the power source and light meter, allowing them to stabilize.
- f. Record the reference power reading in dB. If the jumper is removed from the light source for any reason, the reference power reading must be re-established.
- g. Insert a second appropriate jumper, using an appropriate adapter, between the first jumper and the power meter. Record the power reading in dB.
- h. Reference TSB-140 for additional recommendations and testing guidelines.
- i. Provide written documentation of all test results to owner. Provide electronic copy of test results, in original tester format, to manufacturer when registering project for warranty on-line.

3.12 SYSTEM DOCUMENTATION

- A.Upon completion of the installation, the telecommunications contractor shall provide three (3) full documentation sets to the Engineer for approval. Documentation shall include the items detailed in the sub-sections below.
- B. Documentation shall be submitted within ten (10) working days of the completion of each testing phase (e.g. subsystem, cable type, area, floor, etc.). This is inclusive of all test result and draft as-built drawings. Draft drawings may include annotations done by hand. Machine generated (final) copies of all drawings shall be submitted within 30 working days of the completion of each testing phase. At the request of the Engineer, the telecommunications contractor shall provide copies of the original test results.
- C. The Engineer may request that a 10% random field re-test be conducted on the cable system, at no additional cost, to verify documented findings. Tests shall be a repeat of those defined above. If findings contradict the documentation submitted by the telecommunications contractor, additional testing can be requested to the extent determined necessary by the Engineer, including a 100% re-test. This re-test shall be at no additional cost to the Owner.

3.13 TEST RESULTS

A. Test documentation shall be provided on disk within three weeks after the completion of the project. The disk shall be clearly marked on the outside front cover with the words "Project Test Documentation", the project name, and the date of completion (month and year). The results shall include a record of test frequencies, cable type, conductor pair and cable (or outlet) I.D., measurement direction, reference setup, and crew member name(s). The test equipment name, manufacturer, model number, serial number, software version and last calibration date will also be provided at the end of the document. Unless the manufacturer specifies a more frequent calibration cycle, an annual calibration cycle is anticipated on all test equipment used for this installation. The test document shall detail the test method used and the specific settings of the equipment during the test as well as the software version being used in the field test equipment.

- B. The field test equipment shall meet the requirements of ANSI/TIA 568-C including applicable TSB's and amendments. The appropriate Level III tester shall be used to verify Category 6 cabling systems.
- C. Printouts generated for each cable by the wire (or fiber) test instrument shall be submitted as part of the documentation package. The telecommunications contractor must furnish this information in electronic form (CD-ROM).
- D. Test documentation shall also be provided to the manufacturer within three weeks after the completion of the project. Test results shall be uploaded when registering the project for warranty using the manufacturer's on-line system. Test results shall be in the tester's original format from an approved tester listed on manufacturer's website. All test results must show a PASS; marginal passes (*PASS) are not accepted.
- E. When repairs and re-tests are performed, the problem found and corrective action taken shall be noted, and both the failed and passed test data shall be documented.

3.14 AS-BUILT DRAWINGS

- A. The drawings are to include cable routes and outlet locations. Outlet locations shall be identified by their sequential number as defined elsewhere in this document. Numbering, icons, and drawing conventions used shall be consistent throughout all documentation provided. The Owner will provide floor plans in paper and electronic (DWG, AutoCAD rel. 14) formats on which as-built construction information can be added. These documents will be modified accordingly by the telecommunications contractor to denote as-built information as defined above and returned to the Owner.
- B. The Contractors shall annotate the base drawings and return a hard copy (same plot size as originals) and electronic (AutoCAD rel. 14) form.

PART 4 - WARRANTY AND SERVICES

4.1 WARRANTY

- A. A warranty shall be provided for all internal infrastructure wiring as it pertains to voice and data networking for both copper and fiber systems. All installations must be performed according to the manufacturer's System Warranty and Performance Application.
- B. The warranty will combine an extended product and applications assurance warranty for a minimum of 25 years.
- C. An Extended Product Warranty shall be provided which warrants functionality of all components used in the system from the date of registration. The Extended Product Warranty shall warrant the installed horizontal and/or backbone copper, and both the horizontal and the backbone optical fiber portions of the cabling system.

- D. The Application Assurance Warranty shall cover the failure of the wiring system to support the applications that are designed for the link/channel specifications of ANSI/TIA-568-B.1. These applications include, but are not limited to, 10BASE-T, 100BASE-T, 1000BASE-T, and 155 Mb/s ATM.
- E. The contractor shall provide a warranty on the physical installation.

4.2 CONTINUING MAINTENANCE

A. The contractor shall furnish an hourly rate with the proposal submittal, which shall be valid for a period of one year from the date of acceptance. This rate will be used when cabling support is required to affect moves, adds, and changes to the system (MACs). MACs shall be performed by a certified Contractor and shall be added to the warranty when registered with manufacturer.

4.3 FINAL ACCEPTANCE & SYSTEM CERTIFICATION

A. Completion of the installation, in-progress and final inspections, receipt of the test and as-built documentation, and successful performance of the cabling system for a two week period will constitute acceptance of the system. Upon successful completion of the installation and subsequent inspection, the end user shall be provided with a certificate, from the manufacturer, registering the installation.

END OF SECTION