Technical debt definition

Technical debt

(also tech debt)

Technical debt, often dubbed code liability, represents shortcuts taken
during software development. These trade-offs, while offering
immediate gains, can accrue long-term costs. As the code's obligations
grow, rectifying these issues turns formidable.

Design deficiencies obstruct scalability and robustness. To ensure the
software’s longevity, developers must allocate time to settle this
outstanding balance. Unaddressed, it becomes a growing liability
hindering innovation.

Technical debt examples

1. Legacy systems. Companies cling to outdated systems. They
miss out on modern features and face compatibility challenges.
This habit introduces compatibility challenges and missing out on
modern features.

2. Quick fixes. Developers apply hasty patches to bugs without
addressing root causes. Such carelessness leads to fragile
solutions and future code liabilities.

3. Skipped documentation. Neglecting proper documentation
means newcomers face a steep learning curve, adding to the
design burden.

4. Avoiding updates. By postponing software updates, teams
expose systems to vulnerabilities and miss optimization



opportunities, accruing tech obligations.

5. Inconsistent coding standards. Diverse coding practices across
a team lead to disjointed software structures. This results in
increased maintenance overhead.



